在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为射线AO上一动点,过点H作直线l⊥AO于H,分别交

在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为射线AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC于点N、E、M.(1)当直线... 在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为射线AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC于点N、E、M.(1)当直线l经过点C时(如图1)请证明:BN=CD;(2)当M是BC中点时(如图2),请证明:CD=2CE;(3)在点H运动过程中(利用备用图探究),请直接写出BN、CE、CD三条线段之间的数量关系. 展开
 我来答
赤龙卫C240b
推荐于2016-05-31 · TA获得超过106个赞
知道答主
回答量:140
采纳率:100%
帮助的人:69.9万
展开全部
(1)证明:连接ND.
∵AO平分∠BAC,
∴∠1=∠2,
∵直线l⊥AO于H,
∴∠4=∠5=90°,
∴∠6=∠7,
∴AN=AC,
∴NH=CH,
∴AH是线段NC的中垂线,
∴DN=DC,
∴∠8=∠9.
∴∠AND=∠ACB,
∵∠AND=∠B+∠3,∠ACB=2∠B,
∴∠B=∠3,
∴BN=DN.
∴BN=DC;

(2)证明:过点C作CN'⊥AO交AB于N'.
由(1)可得BN'=CD,AN'=AC,AN=AE.
∴∠4=∠3,NN'=CE.
过点C作CG∥AB交直线l于G.
∴∠4=∠2,∠B=∠1.
∴∠2=∠3.
∴CG=CE.
∵M是BC中点,
∴BM=CM.
在△BNM和△CGM中,
∠B=∠1
BM=CM
∠NMB=∠GMC

∴△BNM≌△CGM.
∴BN=CG.
∴BN=CE.
∴CD=BN'=NN'+BN=2CE.

(3)BN、CE、CD之间的等量关系:
当点M在线段BC上时,CD=BN+CE;
当点M在BC的延长线上时,CD=BN-CE;
当点M在CB的延长线上时,CD=CE-BN.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式