如图1,在半径为5的⊙O中,弦AB=8,点C是劣弧AB上一动点,点C不与点A、B重合,CD⊥AB于D,以点C为圆心,
如图1,在半径为5的⊙O中,弦AB=8,点C是劣弧AB上一动点,点C不与点A、B重合,CD⊥AB于D,以点C为圆心,线段CD的长为半径作圆.(1)若设CD=x,AC?BC...
如图1,在半径为5的⊙O中,弦AB=8,点C是劣弧AB上一动点,点C不与点A、B重合,CD⊥AB于D,以点C为圆心,线段CD的长为半径作圆.(1)若设CD=x,AC?BC=y,请求出y与x之间的函数关系,并写出自变量x的取值范围;(2)当⊙C的面积最大时,在图2中过点A作⊙C的切线AG切⊙C 于点P,交DC的延长线于点G,DC的延长线交⊙C于点F①试判断直线AG与⊙O的位置关系,并证明你的结论;②求线段GF的长.
展开
1个回答
展开全部
解:(1)如图1,连接CO,并延长交⊙O于点E,连接BE.
∵CE是直径,
∴∠CBE=90°.
又∵CD⊥AB于D,
∴∠CDA=90°.
即∠CBE=∠CDA.
在⊙O中,可知∠CAB=∠E.
∴△ACD∽△ECB.
∴
=
,
即AC?BC=CD?EC.
∴y=10x.(2分)
由题意可知,自变量x的取值范围为0<x≤2.(3分)
(2)①直线AG与⊙O相切.
由题意可知,当点C是
的中点时,⊙C的面积最大.
此时,OC⊥AB.∴AB与⊙C相切.
∵AG切⊙C于点P,AC平分∠GAB.即∠GAC=∠BAC.
连接CP,AO.
∵AP=AD,PC=DC,AC=AC,
∴△APC≌△ADC.
∴∠ACP=∠ACD.
∵AO=CO,
∴∠ACO=∠OAC.
∵AG切⊙C于点P,
∴PC⊥AG于G.
∴∠GAC+∠ACP=90°.
∴∠GAC+∠OAC=90°.
∴OA⊥AG.
∴AG与⊙O相切.(6分)
②∵PC⊥AG,OA⊥AG,∴PC∥AO.
∴△PGC∽△AGO.
∴
=
.
由题意可知,PC=FC=2,AO=CO=5,GC=GF+FC.
∴
=
.
解得GF=
.(8分)
∵CE是直径,
∴∠CBE=90°.
又∵CD⊥AB于D,
∴∠CDA=90°.
即∠CBE=∠CDA.
在⊙O中,可知∠CAB=∠E.
∴△ACD∽△ECB.
∴
AC |
EC |
CD |
BC |
即AC?BC=CD?EC.
∴y=10x.(2分)
由题意可知,自变量x的取值范围为0<x≤2.(3分)
(2)①直线AG与⊙O相切.
由题意可知,当点C是
AB |
此时,OC⊥AB.∴AB与⊙C相切.
∵AG切⊙C于点P,AC平分∠GAB.即∠GAC=∠BAC.
连接CP,AO.
∵AP=AD,PC=DC,AC=AC,
∴△APC≌△ADC.
∴∠ACP=∠ACD.
∵AO=CO,
∴∠ACO=∠OAC.
∵AG切⊙C于点P,
∴PC⊥AG于G.
∴∠GAC+∠ACP=90°.
∴∠GAC+∠OAC=90°.
∴OA⊥AG.
∴AG与⊙O相切.(6分)
②∵PC⊥AG,OA⊥AG,∴PC∥AO.
∴△PGC∽△AGO.
∴
PC |
GC |
AO |
GO |
由题意可知,PC=FC=2,AO=CO=5,GC=GF+FC.
∴
2 |
GF+2 |
5 |
GF+7 |
解得GF=
4 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询