已知数列{an}是首项为3,公差为2的等差数列,其前n项和为Sn,数列{bn}为等比数列,且b1=1,bn>0,数列{
已知数列{an}是首项为3,公差为2的等差数列,其前n项和为Sn,数列{bn}为等比数列,且b1=1,bn>0,数列{ban}是公比为64的等比数列.(Ⅰ)求{an},{...
已知数列{an}是首项为3,公差为2的等差数列,其前n项和为Sn,数列{bn}为等比数列,且b1=1,bn>0,数列{ban}是公比为64的等比数列.(Ⅰ)求{an},{bn}的通项公式;(Ⅱ)求证:1S1+1S2+…+1Sn<34.
展开
展开全部
(I)依题意有:an=a1+(n-1)d=3+(n-1)×2=2n+1,
设{bn}的公比为q,则bn=qn?1,
∵数列{ban}是公比为64的等比数列,
∴
=
=q2=64,解得q=8,
∴bn=8n?1;
(II)由(Ⅰ)可得,Sn=3+5+…+(2n+1)=n(n+2),
∴
=
=
(
?
),
∴
+
+…+
=
+
+
+…+
=
(1?
+
?
+
?
+…+
?
)
=
(1+
?
?
)<
.
设{bn}的公比为q,则bn=qn?1,
∵数列{ban}是公比为64的等比数列,
∴
ba2 |
ba1 |
b5 |
b3 |
∴bn=8n?1;
(II)由(Ⅰ)可得,Sn=3+5+…+(2n+1)=n(n+2),
∴
1 |
Sn |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
∴
1 |
S1 |
1 |
S2 |
1 |
Sn |
1 |
1×3 |
1 |
2×4 |
1 |
3×5 |
1 |
n(n+2) |
=
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n |
1 |
n+2 |
=
1 |
2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
3 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询