(2014?抚州模拟)在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA

(2014?抚州模拟)在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.... (2014?抚州模拟)在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值. 展开
 我来答
Virus0053
推荐于2018-03-24 · TA获得超过180个赞
知道答主
回答量:129
采纳率:0%
帮助的人:172万
展开全部
解:(Ⅰ)依题意,因为四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,
所以BB1⊥底面A1B1C1D1
又A1C1?底面A1B1C1D1
所以BB1⊥A1C1
因为A1B1C1D1为菱形,
所以A1C1⊥B1D1.而BB1∩B1D1=B1
所以A1C1⊥平面B1BDD1
(Ⅱ)连接AC,交BD于点E,连接C1E.
依题意,AA1∥CC1
且AA1=CC1,AA1⊥AC,
所以A1ACC1为矩形.
所以OC1∥AE.
OC1
1
2
A1C1
AE=
1
2
AC
,A1C1=AC,
所以OC1=AE,所以AOC1E为平行四边形,
则AO∥C1E.
又AO?平面BC1D,C1E?平面BC1D,
所以AO∥平面BC1D.
(Ⅲ)在△BC1D内,满足OM⊥B1D1的点M的轨迹是线段C1E,包括端点.
分析如下:连接OE,则BD⊥OE.
由于BD∥B1D1,故欲使OM⊥B1D1,只需OM⊥BD,从而需ME⊥BD.
又在△BC1D中,C1D=C1B,又E为BD中点,所以BD⊥C1E.
故M点一定在线段C1E上.
当OM⊥C1E时,OM取最小值.
在直角三角形OC1E中,OE=1,OC1
3
2
C1E=
7
2

所以OMmin
OC1?OE
C1E
21
7
默——孤独00
2015-04-10 · TA获得超过4457个赞
知道小有建树答主
回答量:627
采纳率:0%
帮助的人:237万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式