如图①,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<

如图①,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图②).(1... 如图①,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图②).(1)探究DB′与EC′的数量关系,并给予证明;(2)当DB′∥AE时,求此时旋转角α的度数;(3)如图③,在旋转过程中,设 AC′与DE所在直线交于点P,当△ADP成为等腰三角形时,求此时的旋转角α的度数.(直接写出结果) 展开
 我来答
伦密郎021ec
推荐于2016-03-06 · TA获得超过148个赞
知道答主
回答量:133
采纳率:0%
帮助的人:176万
展开全部
(1)DB′=EC′,
证明:如图②,
∵AB=AC,D、E分别是AB、AC的中点,
∴AD=AE,
∵∠B′AC′=∠DAE=90°,
∴∠B′AD=∠C′AE=90°-∠DAC′,
在△B′AD和△C′AE中,
AB′=AC′
∠B′AD=∠C′AE
AD=AE

∴△B′AD≌△C′AE(SAS),
∴DB′=EC′.

(2)解:∵DB′∥AE,
∴∠ADB′=∠EAD=90°
又∵△B′AD≌△C′AE,
∴∠AEC′=∠ADB′,
∴∠AEC′=90°,
即△AEC′为直角三角形,
又∵AE=
1
2
AC=
1
2
AC′,
∴∠EC′A=30°
∴α=90°-30°=60°.

(3)解:分为三种情况:
①当AP=DP时,
∵∠ADP=45°,
∴∠DAP=∠ACP=45°,
∴α=90°-45°=45°;
②当AD=AP时,此时P和E重合,即α=0°;
③当AD=DP时,
∵∠ADP=45°,
∴∠DAP=∠DPA=
1
2
(180°-∠ADP)=
1
2
×(180°-45°)=67.5°,
∴α=90°-67.5°=22.5°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式