已知AB∥CD,线段EF分别与AB、CD相交于点E、F.(1)如图①,当∠A=20°,∠APC=70°时,求∠C的度数;(

已知AB∥CD,线段EF分别与AB、CD相交于点E、F.(1)如图①,当∠A=20°,∠APC=70°时,求∠C的度数;(2)如图②,当点P在线段EF上运动时(不包括E、... 已知AB∥CD,线段EF分别与AB、CD相交于点E、F.(1)如图①,当∠A=20°,∠APC=70°时,求∠C的度数;(2)如图②,当点P在线段EF上运动时(不包括E、F两点),∠A、∠APC与∠C之间有怎样的数量关系?试证明你的结论;(3)如图③,当点P在线段EF的延长线上运动时,(2)中的结论还成立吗?如果成立,请说明理由;如果不成立,试探究它们之间新的数量关系并证明. 展开
 我来答
手机用户44575
2015-01-06 · 超过60用户采纳过TA的回答
知道答主
回答量:107
采纳率:0%
帮助的人:148万
展开全部

(1)解:过P作PO∥AB,
∵AB∥CD,
∴AB∥PO∥CD,
∵∠A=20°,
∴∠APO=∠A=20°,∠C=∠CPO,
∵∠APC=70°
∴∠C=∠CPO=∠APC-∠APO=70°-20°=50°;

(2)∠A+∠C=∠APC,
证明:过P作PO∥AB,
∵AB∥CD,
∴AB∥PO∥CD,
∴∠APO=∠A,∠C=∠CPO,
∴∠APC=∠APO+∠CPO=∠A+∠C;

(3)解:不成立,关系式是:∠A-∠C=∠APC,
理由是:过P作PO∥AB,
∵AB∥CD,
∴AB∥PO∥CD,
∴∠APO=∠A,∠C=∠CPO,
∴∠A-∠C=∠APO-∠CPO=∠APC,
即∠A-∠C=∠APC.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式