2个回答
展开全部
以AB为边作等边三角形AEB,连接CE,如图所示,
∵△ABE与△ACD都为等边三角形,
∴∠EAB=∠DAC=60°,AE=AB,AD=AC,
∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,
在△EAC和△BAD中,
AE=AB
∠EAC=∠BAD
AC=AD
,
∴△EAC≌△BAD(SAS),
∴BD=EC=5,
∵∠EBA=60°,∠ABC=30°,
∴∠EBC=90°,
在Rt△EBC中,EC=5,EB=3,
根据勾股定理得:BC=
52−32
=4.
∵△ABE与△ACD都为等边三角形,
∴∠EAB=∠DAC=60°,AE=AB,AD=AC,
∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,
在△EAC和△BAD中,
AE=AB
∠EAC=∠BAD
AC=AD
,
∴△EAC≌△BAD(SAS),
∴BD=EC=5,
∵∠EBA=60°,∠ABC=30°,
∴∠EBC=90°,
在Rt△EBC中,EC=5,EB=3,
根据勾股定理得:BC=
52−32
=4.
追问
求的是AD的长呀!!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询