求曲线y=sinx,y=cosx与直线x=0.x=π/2所围成平面图形的面积 (图中阴影部分)
展开全部
所求面积=∫(cosx-sinx)dx+∫(sinx-cosx)dx
=(sinx+cosx)│+(-cosx-sinx)│
=(sin(π/4)+cos(π/4)-sin(0)-cos(0))+(-cos(π/2)-sin(π/2)+cos(π/4)+sin(π/4))
=(√2/2+√2/2-0-1)+(-0-1+√2/2+√2/2)
=2(√2-1).
=(sinx+cosx)│+(-cosx-sinx)│
=(sin(π/4)+cos(π/4)-sin(0)-cos(0))+(-cos(π/2)-sin(π/2)+cos(π/4)+sin(π/4))
=(√2/2+√2/2-0-1)+(-0-1+√2/2+√2/2)
=2(√2-1).
追问
=(sinx+cosx)│+(-cosx-sinx)│
=(sin(π/4)+cos(π/4)-sin(0)-cos(0))+(-cos(π/2)
这不明白,怎么化的?
追答
是0到π/4,π/4到π/2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询