为什么an+(1/an)大于等于2

 我来答
灰色人生203
高粉答主

2018-09-14 · 每个回答都超有意思的
知道小有建树答主
回答量:26
采纳率:100%
帮助的人:7391
展开全部

有两种方法可以证明an+(1/an)大于等于2,如下:

算法一:

an必须大于0,根据a+b大于等于二倍的根号下ab,

把an看成a , 把1/an看成b,

故an+(1/an)大于等于二倍的根号下an乘以1/an,等于2

即得出an+(1/an)大于等于2

算法二:

∵数列{an}中,a1=1,an+1=2an-3, ∴an+1-3=2(an-3),a1-3=-2, ∴an+1?3 an?3 =2

∴{an-3}是首项为-2,公比为2的等比数列, ∴an?3=(?2)?2n?1=?2n, ∴an=3?2n.

扩展资料

算法一运用的是基本不等式的思想,基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。具体内容如下:

公式 ,当且仅当  时取等号

其中  称为  的算术平均数,  称为  的几何平均数。

变形,当且仅当  时取等号。

算法二运用的是数列的思想,数列(sequence of number)是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

著名的数列有斐波那契数列,三角函数,卡特兰数,杨辉三角等。

参考资料:百度百科-an+(1/an)大于等于2

帐号已注销
2018-09-17 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:174万
展开全部

基本不等式:(a-b)²≥0,a²+b²-2ab≥0,a²+b²≥2ab,这是基本不等式推导过程。下面是变式:(√a)²+(√b)²≥2√(ab),得a+b≥2√(ab)。

代入an和1/an进入a+b≥2√(ab),就可以得到an+(1/an)≥2。

两个正实数的算术平均数大于或等于它们的几何平均数

扩展资料

公式 

当且仅当a=b时取等号其中  称为a,b的算术平均数,  称为a,b的几何平均数。

变形

当且仅当a=b时取等号.

参考资料:百度百科基本不等式

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
来自卷桥客观的四叶草
2018-08-24 · TA获得超过2.2万个赞
知道答主
回答量:15
采纳率:100%
帮助的人:2357
展开全部

这是通过基本不等式而得出的。

首先基本不等式为:a+b≥2√ab

替代后则为,an+1/an≥2√(an*1/an)

所以:an+1/an≥2

拓展资料:

基本不等式是主要应用于求某些函数的最值及证明的不等式。

其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

公式

 

当且仅当  时取等号

其中  称为  的算术平均数,

 称为 的几何平均数。

变形

当且仅当  时取等号

参考资料:

百度百科-基本不等式

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友e8e4e69
2018-07-12 · TA获得超过2.4万个赞
知道小有建树答主
回答量:262
采纳率:100%
帮助的人:8.4万
展开全部

首先由(根号a-根号b)^2>=0,得出a+b>=2倍的根号(ab),b为任意数,当b=1/a时,所以有a+1/a>=2。

补充:提问题目中应添加an>0这一个必要条件。

拓展资料:

一个正数与其倒数的和不小于 2 。用数学式子写出来就是:x + 1/x ≥ 2 。
这是均值定理的简单应用,也可以直接证明:x - 2 + 1/x = (√x - 1/√x)^2 ≥ 0 。

均值定理,又称基本不等式。主要内容为在正实数范围内,若干数的几何平均数不超过他们的算术平均数,且当这些数全部相等时,算术平均数与几何平均数相等。

均值定理是高中数学学习中的一个非常重要的知识点,在函数求最值问题中有十分频繁的应用。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-08-05
展开全部
∵数列{an}中,a1=1,an+1=2an-3, ∴an+1-3=2(an-3),a1-3=-2, ∴an+1?3 an?3 =2, ∴{an-3}是首项为-2,公比为2的等比数列, ∴an?3=(?2)?2n?1=?2n, ∴an=3?2n.故选:C.
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式