1/(x+根号下x^2+x+1)的不定积分

 我来答
轮看殊O
高粉答主

2019-05-08 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:739万
展开全部

令  x+√(x²+x+1)=u,则x²+x+1=(u-x)²=u²-2ux+x²;故得x+1=u²-2ux;

(2u+1)x=u²-1;∴x=(u²-1)/(2u+1);

dx=[2u(2u+1)-2(u²-1)]du/(2u+1)²=[(2u²答团指+2u+2)/(2u+1)²]du;故:

扩或毕展清配资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C

10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C

小小芝麻大大梦
高粉答主

2019-04-28 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:967万
展开全部

1/根号下(x^2+1)的不定积分解答过程如下:

其中运用到了换元法,其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。

扩展资料:

分部积分法

设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu

两边积分,得分部积分公式

∫udv=uv-∫vdu。 ⑴

称公式⑴为分部积分公式.如果积分∫vdu易于求出,则左端积分式随之得到.

分部积分公式运用成败的关键是恰当地选择u,v

一般来说,u,v 选取的原则是:

1、积分容易者选为v。

2、求导简单者选为u。

例子:∫Inx dx中应设U=Inx,V=x

分部积分法的实质是:将所求积分化为两个积分之差,禅御积分容易者先积分。实际上是两次积分。

有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成贺盯岩一个整式和一个真分式的和.可见问题转化为计算真分式的积分.

可以证明,任何真分式总则枣能分解为部分分式之和。

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wjl371116
推荐于2018-01-03 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67424

向TA提问 私信TA
展开全部

令  x+√(x²+x+1)=u,蚂启则x²+x+1=(u-x)²=u²-2ux+x²;故得蔽衫x+1=u²-2ux;

(2u+1)x=u²-1;∴x=(u²宏物腔-1)/(2u+1);

dx=[2u(2u+1)-2(u²-1)]du/(2u+1)²=[(2u²+2u+2)/(2u+1)²]du;故:

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
数学刘哥
2018-08-26 · 知道合伙人教育行家
数学刘哥
知道合伙人教育行家
采纳数:2342 获赞数:7193
乙等奖学金,本科高数上97高数下95,应用数学考研专业第二

向TA提问 私信TA
展开全部

如图所皮伍源哪示换元法可以燃裂或计算

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fkdwn
2010-11-05 · TA获得超过1.3万个赞
知道大有可为答主
回答量:2583
采纳率:0%
帮助的人:1399万
展开全部
令x=tant,t∈(-π/2,π/2),则√(1+x²)=sect, dx=sec²tdt
∫√(1+x²埋判坦) dx
=∫sec³t dt
=∫sect d(tant)
=sect*tant-∫tant d(sect)
=sect*tant-∫tan²t*sectdt
=sect*tant-∫(sec²t-1)*sectdt
=sect*tant-∫弯桐sec³tdt+∫sectdt

∴∫sec^3tdt=(1/2)(sect*tant+∫sectdt)
=(1/2)(sect*tant+ln|sect+tant|)+C

∴原式=(1/2)[x*√冲判(x^2+1)+ln|√(x^2+1)+x|]+C
C为任意常数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(15)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式