为什么f(x,y)=根号下|xy|在(0,0)点处的偏导数存在?

我知道用定义算出来是存在的,等于零,可是如果直接对函数表达式求偏导数,会有等于零的分母出现啊?... 我知道用定义算出来是存在的,等于零,可是如果直接对函数表达式求偏导数,会有等于零的分母出现啊? 展开
 我来答
茹翊神谕者

2021-08-21 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1637万
展开全部

简单计算一下即可,答案如图所示

bill8341
高粉答主

2018-01-10 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3679万
展开全部
看一下图像就知道
√|xy|,当xy大于0,偏导数为1/2/sqrt(xy)*y(假如对x求导),而当xy小于0时,偏导数为-1/2/sqrt(xy)*y,因为当x=0时,左右导数都等于无穷大,因此连续。

而|xy|,当xy大于0时,偏导数为y(假如对x求导),而当xy小于0时,偏导数为-y,导数不同,因此不连续
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式