证明函数f(x,y)=根号下xy的绝对值在(0,0)点连续,其偏导在(0,0)处均存在,但函数在(

证明函数f(x,y)=根号下xy的绝对值在(0,0)点连续,其偏导在(0,0)处均存在,但函数在(0,0)不可微... 证明函数f(x,y)=根号下xy的绝对值在(0,0)点连续,其偏导在(0,0)处均存在,但函数在(0,0)不可微 展开
帐号已注销
2021-07-28 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

√|xy|,当xy大于0,偏导数为1/2/sqrt(xy)*y(假如对x求导),而当xy小于0时,偏导数为-1/2/sqrt(xy)*y,因为当x=0时,左右导数都等于无穷大,因此连续。

而|xy|,当xy大于0时,偏导数为y(假如对x求导),而当xy小于0时,偏导数为-y,导数不同,因此不连续。

证明函数f(x,y)=sqrt(lxyl)在(0,0)点连续,偏导数存在,但在(0,0)点不可微根号(|xy|)<=根号(x^2+y^2)/2,故连续。利用定义,f对x的导数fx(0,0)=lim(x趋于0)(f(x,0)-f(0,0))/(x-0)=0,f对y的导数fy(0,0)=lim(x趋于0)(f(x,0)-f(0,0))/(x-0)=0,故偏导数存在。

几何含义

函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。

匿名用户
2014-04-24
展开全部

追问
谢谢你~解答的非常棒!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式