怎么证明矩阵向量组线性无关
4个回答
展开全部
证明矩阵向量组线性无关,就是把这些向量组成一个矩阵,然后用初等行变换将之变成只含1和0的矩阵;然后观察每列的元素,如果某一列能够被其他列线性计算表示,则说明是线性相关,反之线性无关。
证明举例:A=[1 0 0]T 和B= [010]T 和C= [001]T, 他们之间是没办法 用 A = b*B+c*C 来表示的,或者找不到b和c,使得 A = b*B+c*C成立, 此时说明A和B C线性无关。 反之,如果能找到b和c,使得 A = b*B+c*C成立,那么A和B C线性无关。
扩展资料
矩阵向量线性相关定理:
1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。
3、两个向量a、b共线的充要条件是a、b线性相关。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
5、n+1个n维向量总是线性相关,个数大于维数必相关。
6、若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。若行列式为零,则向量组线性相关;否则是线性无关的。
参考资料:百度百科—线性相关
展开全部
证明向量组是否线性无关就是求解一个齐次线性方程组,设k1α1+k2α2+...+knαn=0,相当于向量中各个分量是0,由此便有一个齐次线性方程组,如果系数矩阵的秩和变量数目一样,那么只有唯一解,零解,此时就线性无关,否则线性相关。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询