一道初中的奥数题,帮忙解一下,写下过程,不要写的太深奥,
已知四个整数a,b,c,d满足a^4+b^4+c^4+d^4=4abcd。求证a=b=c=d。...
已知四个整数a,b,c,d满足a^4+b^4+c^4+d^4=4abcd。
求证a=b=c=d。 展开
求证a=b=c=d。 展开
展开全部
a^4+b^4+c^4+d^4=4abcd
2a^4 +2b^4+2c^4+2d^4=8abcd
a^4-2a^2b^2 + b^4 +b^4 - 2b^2c^2+c^4+c^4-2c^2d^2+d^4+d^4-2d^2a^2+a^4 =8abcd-2a^2b^2-2b^2c^2-2c^2d^2-2d^2a^2
(a^2-b^2)^2+(b^2-c^2)^2+(c^2-d^2)^2+(d^2-a^2)^2=- 2*{(a^2b^2-2abcd+c^2d^2)+(b^2c^2-2abcd+a^2d^2)}
(a^2-b^2)^2+(b^2-c^2)^2+(c^2-d^2)^2+(d^2-a^2)^2=- 2*{(ab-cd)^2+(bc-ad)^2
(a^2-b^2)^2+(b^2-c^2)^2+(c^2-d^2)^2+(d^2-a^2)^2 + 2*{(ab-cd)^2+(bc-ad)^2 = 0
等式的左边均为平方项大于等于0, 等式最后的结果等于0,只能各项均等于0
故,a^2 = b^2 ....., 所以,a=b=c=d
2a^4 +2b^4+2c^4+2d^4=8abcd
a^4-2a^2b^2 + b^4 +b^4 - 2b^2c^2+c^4+c^4-2c^2d^2+d^4+d^4-2d^2a^2+a^4 =8abcd-2a^2b^2-2b^2c^2-2c^2d^2-2d^2a^2
(a^2-b^2)^2+(b^2-c^2)^2+(c^2-d^2)^2+(d^2-a^2)^2=- 2*{(a^2b^2-2abcd+c^2d^2)+(b^2c^2-2abcd+a^2d^2)}
(a^2-b^2)^2+(b^2-c^2)^2+(c^2-d^2)^2+(d^2-a^2)^2=- 2*{(ab-cd)^2+(bc-ad)^2
(a^2-b^2)^2+(b^2-c^2)^2+(c^2-d^2)^2+(d^2-a^2)^2 + 2*{(ab-cd)^2+(bc-ad)^2 = 0
等式的左边均为平方项大于等于0, 等式最后的结果等于0,只能各项均等于0
故,a^2 = b^2 ....., 所以,a=b=c=d
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a^4+b^4+c^4+d^4=4abcd
2a^4 +2b^4+2c^4+2d^4=8abcd
a^4-2a^2b^2 + b^4 +b^4 - 2b^2c^2+c^4+c^4-2c^2d^2+d^4+d^4-2d^2a^2+a^4 =8abcd-2a^2b^2-2b^2c^2-2c^2d^2-2d^2a^2
(a^2-b^2)^2+(b^2-c^2)^2+(c^2-d^2)^2+(d^2-a^2)^2=- 2*{(a^2b^2-2abcd+c^2d^2)+(b^2c^2-2abcd+a^2d^2)}
(a^2-b^2)^2+(b^2-c^2)^2+(c^2-d^2)^2+(d^2-a^2)^2=- 2*{(ab-cd)^2+(bc-ad)^2
(a^2-b^2)^2+(b^2-c^2)^2+(c^2-d^2)^2+(d^2-a^2)^2 + 2*{(ab-cd)^2+(bc-ad)0
2a^4 +2b^4+2c^4+2d^4=8abcd
a^4-2a^2b^2 + b^4 +b^4 - 2b^2c^2+c^4+c^4-2c^2d^2+d^4+d^4-2d^2a^2+a^4 =8abcd-2a^2b^2-2b^2c^2-2c^2d^2-2d^2a^2
(a^2-b^2)^2+(b^2-c^2)^2+(c^2-d^2)^2+(d^2-a^2)^2=- 2*{(a^2b^2-2abcd+c^2d^2)+(b^2c^2-2abcd+a^2d^2)}
(a^2-b^2)^2+(b^2-c^2)^2+(c^2-d^2)^2+(d^2-a^2)^2=- 2*{(ab-cd)^2+(bc-ad)^2
(a^2-b^2)^2+(b^2-c^2)^2+(c^2-d^2)^2+(d^2-a^2)^2 + 2*{(ab-cd)^2+(bc-ad)0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询