因为积分区域D关于直线y=x对称,所以
二重积分满足
轮换对称性,即
∫∫(D) e^[f(x)-f(y)]dxdy=∫∫(D) e^[f(y)-f(x)]dxdy
=(1/2)*{∫∫(D) e^[f(x)-f(y)]dxdy+∫∫(D) e^[f(y)-f(x)]dxdy}
=(1/2)*∫∫(D) {e^[f(x)-f(y)]+e^[f(y)-f(x)]}dxdy
>=(1/2)*∫∫(D) 2*√{e^[f(x)-f(y)]*e^[f(y)-f(x)]}dxdy
=∫∫(D) dxdy
=(b-a)^2