1个回答
展开全部
let
f(x)= ln(1-x) =>f(0) =0
f'(x) = -1/(1-x) =>f'(0)/1! = -1
f''(x) = -1/(1-x)^2 =>f''(0)/2! = -1/2
f'''(x) = -2/(1-x)^3 =>f'''(0)/3! = -1/3
...
f^(n)(x) =-(n-1)!/(1-x)^n => f^(n)(0)/n! = -1/n
f(x)
=ln(1-x)
=f(0) +[f'(0)/1!]x+[f''(0)/2!]x^2+....+[f^(n)(0)/n!]x^n+...
=-[x + (1/2)x^2+(1/3)x^3+...+(1/n)x^n+....]
ln(1-x) =-[x + (1/2)x^2+(1/3)x^3+...+(1/n)x^n+....]
x=2x
ln(1-2x) =-[2x + (1/2)(2x)^2+(1/3)(2x)^3+...+(1/n)(2x)^n+....]
f(x)= ln(1-x) =>f(0) =0
f'(x) = -1/(1-x) =>f'(0)/1! = -1
f''(x) = -1/(1-x)^2 =>f''(0)/2! = -1/2
f'''(x) = -2/(1-x)^3 =>f'''(0)/3! = -1/3
...
f^(n)(x) =-(n-1)!/(1-x)^n => f^(n)(0)/n! = -1/n
f(x)
=ln(1-x)
=f(0) +[f'(0)/1!]x+[f''(0)/2!]x^2+....+[f^(n)(0)/n!]x^n+...
=-[x + (1/2)x^2+(1/3)x^3+...+(1/n)x^n+....]
ln(1-x) =-[x + (1/2)x^2+(1/3)x^3+...+(1/n)x^n+....]
x=2x
ln(1-2x) =-[2x + (1/2)(2x)^2+(1/3)(2x)^3+...+(1/n)(2x)^n+....]
更多追问追答
追问
请您帮我分析一下黄色部分呗,黄色部分是一阶导
追答
1/(1-x) = 1+x+x^2+...+x^n+...
1/(1-2x)= 1+(2x)+(2x)^2+....+(2x)^n+....
y'(x)
=-2/(1-2x)
=-2[1+(2x)+(2x)^2+....+(2x)^n+.... ]
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询