一道高数证明题
1个回答
展开全部
证∮yf(x,y)dx - xf(x,y)dy=0,对这个用格林,或者积分与路径无关,只需证yf'y(x,y)+2f(x,y)+xf'x(x,y)=0;
f(tx,ty)=t^(-2) f(x,y),对t求导得yf'y(tx,ty)+xf'x(tx,ty)=-2t^(-3)f(x,y),令t=1既得上面需证的式子,得证
貌似上一个题也是答的你的= =,给点分啦
f(tx,ty)=t^(-2) f(x,y),对t求导得yf'y(tx,ty)+xf'x(tx,ty)=-2t^(-3)f(x,y),令t=1既得上面需证的式子,得证
貌似上一个题也是答的你的= =,给点分啦
追问
看不懂,甚至感觉不到和题的关联,证明题都这样吗?(゜゜)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询