给几道牛吃草例题带解的
2个回答
展开全部
一片草场长满青草,现在此草场可供10头牛吃20天,或15头牛吃10天,若供25头牛可吃多少天???
【分析与解答】:设每头牛每天吃草量为10千克。
那么:
10头牛20天的吃草量为:10×10×20=200(千克),等于草场上原有草量
与20天草的生长量之和。
15头牛10天的吃草量为:10×15×10=1500(千克),等于草场上原有草量
与10天草的生长量之和。
比较二式可发现,两者相差的是10天草的生长量。从而可以求出草场上的草每天的
生长量为:
(2000-1500)÷(20-10)=50(千克)
草场上的划20天的生长量为:
50×20=1000(千克)
从而可以求出草场上原有的草量为:
2000-1000=1000(千克)
因为每头牛每天吃草量为10千克,5头牛生天吃草10×5=50(千克),正好是草场
上的草每天的生长量,所以把25头牛分为5和20两部分,其中的5头牛专门吃每天生长的
50千克草,剩下的20头牛专门吃草场上原有的草,可以吃
1000
÷(10×20)=5
(天)
(1)草场上的草每天生长出多少千克?
(10×10×20-10×15×10)÷(20-10)=50
(千克)
(2)草场上原有的草是多少千克?
10×10×20-50×20=1000
(千克)
(3)可供25头牛吃几天?
1000÷[10×(25-5)]=5
(天)
牛吃草问题又叫牛顿问题
“牛吃草问题”主要有两种类型:
1、求时间
2、求头数
除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。
①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。
②已知天数求知数时,同样需要先求出“每天新生长的草量”和“原有草量”。
③根据“(原有草量”+若干天里新生草量)÷天数”,求出只数。
【分析与解答】:设每头牛每天吃草量为10千克。
那么:
10头牛20天的吃草量为:10×10×20=200(千克),等于草场上原有草量
与20天草的生长量之和。
15头牛10天的吃草量为:10×15×10=1500(千克),等于草场上原有草量
与10天草的生长量之和。
比较二式可发现,两者相差的是10天草的生长量。从而可以求出草场上的草每天的
生长量为:
(2000-1500)÷(20-10)=50(千克)
草场上的划20天的生长量为:
50×20=1000(千克)
从而可以求出草场上原有的草量为:
2000-1000=1000(千克)
因为每头牛每天吃草量为10千克,5头牛生天吃草10×5=50(千克),正好是草场
上的草每天的生长量,所以把25头牛分为5和20两部分,其中的5头牛专门吃每天生长的
50千克草,剩下的20头牛专门吃草场上原有的草,可以吃
1000
÷(10×20)=5
(天)
(1)草场上的草每天生长出多少千克?
(10×10×20-10×15×10)÷(20-10)=50
(千克)
(2)草场上原有的草是多少千克?
10×10×20-50×20=1000
(千克)
(3)可供25头牛吃几天?
1000÷[10×(25-5)]=5
(天)
牛吃草问题又叫牛顿问题
“牛吃草问题”主要有两种类型:
1、求时间
2、求头数
除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。
①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。
②已知天数求知数时,同样需要先求出“每天新生长的草量”和“原有草量”。
③根据“(原有草量”+若干天里新生草量)÷天数”,求出只数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
牛吃草问题又称为消长问题或牛顿问题,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。编辑本段基本解法解决牛吃草问题常用到四个基本、常用的公式,分别是︰(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。这四个公式是解决消长问题的基础。由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。这类问题的基本数量关系是:
1.吃的天数=原有草量÷(牛头数-草的生长速度)
2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。
1.吃的天数=原有草量÷(牛头数-草的生长速度)
2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询