三重积分求Z=√(X^2+Y^2)与Z=6-X^2-Y^2围成的体积,做好有过程

 我来答
穰亭晚用雁
2019-12-03 · TA获得超过3.6万个赞
知道小有建树答主
回答量:1.2万
采纳率:27%
帮助的人:1013万
展开全部
立体体积可用三重积分表示,V=∫∫∫dxdydz,积分区域为z=6-x^2-y^2及z=√x^2十y^2所围成的立体,联立两曲面方程,解得z=2即两曲面的交接面。用截面法计算此三重积分,V=∫(0到2)dz∫∫dxdy十
∫(2到6)dz∫∫dxdy=π∫(0到2)z^2dz十
π∫(2到6)(6-z)dz=32π/3
茹翊神谕者

2021-09-06 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1648万
展开全部

简单计算一下即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
侍合英海衣
2019-11-27 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:34%
帮助的人:928万
展开全部
两曲面方程联立,消去z,得x^2+y^2=1,所以立体在xoy面上的投影区域是d:x^2+y^2≤1

进而整个空间区域在柱坐标系下表示为:0≤θ≤2π,0≤ρ≤1,ρ^2≤z≤ρ

体积v=∫(0→2π)
dθ∫(0→1)
ρdρ∫(ρ^2→ρ)
dz=2π∫(0→1)
ρ(ρ-ρ^2)dρ=π/6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式