这个题怎么解?
f(x)
=(1-x)^n.D(x) ; x<1
=a ; x=1
=bx^2+cx+1 ; x>1
f(1-)
=lim(x->1) (1-x)^n .D(x)
=0 (n>0)
f(1) = a
f(1+) =b+c+1
x=1 , f(x) 连续
=>
a=0 and b+c= -1 (1)
f'(-1)
=lim(h->0) [(1-(1+h))^n .D(h) - f(1) ]/h
=lim(h->0) [ (-h)^n .D(h) ]/h
=lim(h->0) [ -(-h)^(n-1) .D(h) ]
=0 ( n>1)
f'(1+)
=lim(h->0) [b(h+1)^2+c(h+1)+1 - f(1) ]/h
=lim(h->0) [b(h+1)^2+c(h+1)+1 ]/h
=lim(h->0) [ bh^2+(2b+c)h+ (b+c+1) ]/h
=0
=>
2b+c=0 (2)
(2)-(1)
b=1
from (1)
b+c=-1
c=-2
(b,c)=(1,-2)
ie
f'(1)=0 , n>1 , (a,b,c)=(0,1,-2)