设f(x)=lim(n近于无穷) 根号下的n次方 (1^n+x^n+(x^2/2)^n),x>=0求f(x)的分段表达
展开全部
当x1时,f(x)=e^ lim(n→∞) (1/n)·ln(1 +x^n +(x^2/2)^n)
=e^ lim(n→∞) (ln x ·x^n + ln(x^2/2) ·(x^2/2)^n) /(1 +x^n +(x^2/2)^n)【洛比达法则】
=e^ lim(n→∞) (ln x + ln(x^2/2) ·(x/2)^n) /(1/x^n +1 +(x/2)^n)【指数上分子和分母都除以x^n】
=e^ lim(n→∞) (ln x + ln(x^2/2) ·(x/2)^n) /( 1 +(x/2)^n)
则
{
当1
=e^ lim(n→∞) (ln x ·x^n + ln(x^2/2) ·(x^2/2)^n) /(1 +x^n +(x^2/2)^n)【洛比达法则】
=e^ lim(n→∞) (ln x + ln(x^2/2) ·(x/2)^n) /(1/x^n +1 +(x/2)^n)【指数上分子和分母都除以x^n】
=e^ lim(n→∞) (ln x + ln(x^2/2) ·(x/2)^n) /( 1 +(x/2)^n)
则
{
当1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询