正方形ABCD中,点O式对角线AC的中点,P是对角线AC上一动点,过点P
正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,如图1,当点P与点O重合时,显然有DF⊥CF。(1)如图2,若点P在线段OA上...
正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,如图1,当点P与点O重合时,显然有DF⊥CF。
(1)如图2,若点P在线段OA上(不与点A、O重合)PE⊥PB且交CD于点E。
1、求证:DF=EF
2、写出线段PC、PA、CE之间的一个等量关系,并证明你的结论。
2)若点P在线段OC上(不与点O、C重合)PE⊥PB且PE交直线CD于点E,完成图3并判断(1) 中的结论1、2是否成立?若不成立,写出相应结论。 展开
(1)如图2,若点P在线段OA上(不与点A、O重合)PE⊥PB且交CD于点E。
1、求证:DF=EF
2、写出线段PC、PA、CE之间的一个等量关系,并证明你的结论。
2)若点P在线段OC上(不与点O、C重合)PE⊥PB且PE交直线CD于点E,完成图3并判断(1) 中的结论1、2是否成立?若不成立,写出相应结论。 展开
2个回答
展开全部
正方形ABCD中,点O是对角线AC的中点,P是对角线AC上的一动点,过点P作PF垂直CD于点F,如图1,当点P与O重合时,DF=CF.
1.图2,如点P在线段AO上,不与点A,O重合。PE垂直PB且PE交CD于点E。求证:DF=EF 写出线段PC,PA,CE 之间的一个等量关系,并证明你地结论
如左边图
连接BE、PD,过点P作AD的垂线,垂足为G
因为点O为正方形ABCD对角线AC中点
所以,点O为正方形中心
且,AC平分∠DAB和∠DCB
已知PE⊥PB,BC⊥CE
所以,B、C、E、P四点共圆
所以,∠PEB=∠PCB=45°,∠PBE=∠PCE=45°
所以,∠PBE=∠PEB=45°
所以,△PBE为等腰直角三角形
所以,PB=PE
而,在△PAB和△PAD中:
AB=AD(已知)
∠BAP=∠DAP=45°(已证)
AP公共
所以,△PAB≌△PAD(SAS)
所以,PB=PD
所以:PE=PD
又PF⊥CD
所以,DF=EF
因为PF⊥CD,PG⊥AD
且,∠PCF=PAG=45°
所以,△PCF和△PAG均为等腰直角三角形
且,四边形DFPG为矩形
所以:
PA=√2*PG
PC=√2*CF
而,PG=DF,DF=EF
所以,PA=√2*EF
所以,PC=√2*CF=√2*(CE+EF)=√2*CE+√2*EF=√2*CE+PA
即,PC、PA、CE满足关系为:PC=√2CE+PA
2.如点P在线段OC上不与O,C重合,PE垂直于PB且PE交直线CD于点E.请完成图3并判断问题1.2是否成立?如不成立写出相应的结论
如右图
同上面的思路
因为PB⊥PE,BC⊥CE
所以,B、P、C、E四点共圆
所以,∠PEC=∠PBC
而,在△PBC和△PDC中:
BC=DC(已知)
∠PCB=∠PCD=45°(已证)
PC边公共
所以,△PBC≌△PDC(SAS)
所以,∠PBC=∠PDC
所以,∠PEC=∠PDC
而PF⊥DE
所以,DF=EF
同上面理:
PA=√2*PG=√2*DF=√2*EF
PC=√2*CF
所以,PA=√2*EF=√2*(CE+CF)=√2*CE+√2*CF=√2*CE+PC
即,PC、PA、CE满足关系为:PA=√2*CE+PC
1.图2,如点P在线段AO上,不与点A,O重合。PE垂直PB且PE交CD于点E。求证:DF=EF 写出线段PC,PA,CE 之间的一个等量关系,并证明你地结论
如左边图
连接BE、PD,过点P作AD的垂线,垂足为G
因为点O为正方形ABCD对角线AC中点
所以,点O为正方形中心
且,AC平分∠DAB和∠DCB
已知PE⊥PB,BC⊥CE
所以,B、C、E、P四点共圆
所以,∠PEB=∠PCB=45°,∠PBE=∠PCE=45°
所以,∠PBE=∠PEB=45°
所以,△PBE为等腰直角三角形
所以,PB=PE
而,在△PAB和△PAD中:
AB=AD(已知)
∠BAP=∠DAP=45°(已证)
AP公共
所以,△PAB≌△PAD(SAS)
所以,PB=PD
所以:PE=PD
又PF⊥CD
所以,DF=EF
因为PF⊥CD,PG⊥AD
且,∠PCF=PAG=45°
所以,△PCF和△PAG均为等腰直角三角形
且,四边形DFPG为矩形
所以:
PA=√2*PG
PC=√2*CF
而,PG=DF,DF=EF
所以,PA=√2*EF
所以,PC=√2*CF=√2*(CE+EF)=√2*CE+√2*EF=√2*CE+PA
即,PC、PA、CE满足关系为:PC=√2CE+PA
2.如点P在线段OC上不与O,C重合,PE垂直于PB且PE交直线CD于点E.请完成图3并判断问题1.2是否成立?如不成立写出相应的结论
如右图
同上面的思路
因为PB⊥PE,BC⊥CE
所以,B、P、C、E四点共圆
所以,∠PEC=∠PBC
而,在△PBC和△PDC中:
BC=DC(已知)
∠PCB=∠PCD=45°(已证)
PC边公共
所以,△PBC≌△PDC(SAS)
所以,∠PBC=∠PDC
所以,∠PEC=∠PDC
而PF⊥DE
所以,DF=EF
同上面理:
PA=√2*PG=√2*DF=√2*EF
PC=√2*CF
所以,PA=√2*EF=√2*(CE+CF)=√2*CE+√2*CF=√2*CE+PC
即,PC、PA、CE满足关系为:PA=√2*CE+PC
参考资料: http://iask.sina.com.cn/b/16512193.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询