微积分在实际中的应用

 我来答
慕色要安然DE
2022-12-30 · TA获得超过100个赞
知道小有建树答主
回答量:1165
采纳率:100%
帮助的人:17.4万
展开全部

(一)排队等待中的极限夹逼定理

在数列极限的夹逼定理中,画出3条与轴线垂直的直线,分别代表3个垂直于平面的平面,从左到右将其标记为Yn,a,Zn,并将a假设为固定形式,Yn、Zn都向a无限接近,而此时在Yn与Zn之间随意放入平面Xn,此值都是无限向a趋近,这就是夹逼定理的形象描述。

(二)“微元法”计算立体体积在切菜中的应用

在研究定积分计算平行截面的面积已知的立体空间体积时,假设将空间中某个立体面,由一个曲面及垂直于x轴的两个平面围成,如果使用任意点并与x轴的平面截立体垂直,所得的截面面积也就是已知连续函数,此立体体积就能通过定积分表示。并通过“微元法”得出结论。

(三)考虑为切黄瓜圈时,将洗净的黄瓜放到水平放置的菜板上,菜刀则垂直于菜板的方向切去黄瓜两端,也就是所求体积的立体空间。

接下来试想如何将计算出这个不规则黄瓜的体积?也就是将间隔较小距离且垂直于菜板方向切下一个黄瓜薄片,将其视为一个支柱体,这个体积也就是等于截面的面积乘以厚度。举一反三,如果将这根黄瓜切成若干薄片,计算每个薄片的面积并相加就可得到黄瓜的近似体积,且黄瓜片约薄,体积值就约精确。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式