π是多少,怎么计算的?
11个回答
展开全部
π是一个数学常数,代表圆的周长与直径的比例,约等于3.14159265358979(小数点后面有无限个数字)。π的计算方法有多种,其中最常见的是通过圆的周长或面积来计算。下面是一些计算π的方法:
1. 周长法:将圆的周长除以直径,即可得到π的近似值。例如,对于直径为1的圆,其周长约为3.14159265358979,因此π约等于3.14159265358979。
2. 随机法:利用随机数模拟抛硬币或投骰子的过程,统计落在圆内的次数与总次数的比例,即可得到π的近似值。例如,抛10000次硬币,其中有7857次落在圆内,则π约等于3.1428。
3. 莱布尼茨级数法:利用级数求和的方法计算π的近似值。例如,通过计算以下级数的前几项,可以得到π的近似值:
π/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ...
4. 马青公式法:利用复杂的数学公式计算π的精确值。例如,马青公式可以表示为:
π/4 = arctan(1) - arctan(1/3) + arctan(1/5) - arctan(1/7) + ...
其中arctan表示反正切函数。
总之,计算π的方法有很多种,不同的方法适用于不同的场合。在实际应用中,通常使用近似值即可满足需求。
1. 周长法:将圆的周长除以直径,即可得到π的近似值。例如,对于直径为1的圆,其周长约为3.14159265358979,因此π约等于3.14159265358979。
2. 随机法:利用随机数模拟抛硬币或投骰子的过程,统计落在圆内的次数与总次数的比例,即可得到π的近似值。例如,抛10000次硬币,其中有7857次落在圆内,则π约等于3.1428。
3. 莱布尼茨级数法:利用级数求和的方法计算π的近似值。例如,通过计算以下级数的前几项,可以得到π的近似值:
π/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ...
4. 马青公式法:利用复杂的数学公式计算π的精确值。例如,马青公式可以表示为:
π/4 = arctan(1) - arctan(1/3) + arctan(1/5) - arctan(1/7) + ...
其中arctan表示反正切函数。
总之,计算π的方法有很多种,不同的方法适用于不同的场合。在实际应用中,通常使用近似值即可满足需求。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
派的公式:π=sin(180°÷n)×n。圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。
圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592653),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592653便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比值。它圆周率π也等于圆形之面积与半径平方之比值。是精确计算圆周长、圆面积、球体积等几何形状的关键值。
方法/步骤
1
南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),得出圆周率π应该介于3.1315926和3.1415927之间,还得到两个近似分数值,密率355/113和约率22/7(分子/分母)。他的辉煌成就比欧洲至少早了近千年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。
2
电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下最新的纪录。2010年1月7日——法国一工程师将圆周率算到小数点后27000亿位。2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。
3
2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。今年56岁近藤茂使用的是自己组装的计算机,从去年10月起开始计算,花费约一年时间刷新了纪录。
而如今计算机高速发展,人们虽然已经知道π是一个无理数,而且已经计算得越来越精准,而人们不管是工程测量、数学解题过程中,大部分都取前两位数,就是π≈3.14,也产生了圆周率日(3月14日)。
圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592653),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592653便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比值。它圆周率π也等于圆形之面积与半径平方之比值。是精确计算圆周长、圆面积、球体积等几何形状的关键值。
方法/步骤
1
南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),得出圆周率π应该介于3.1315926和3.1415927之间,还得到两个近似分数值,密率355/113和约率22/7(分子/分母)。他的辉煌成就比欧洲至少早了近千年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。
2
电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下最新的纪录。2010年1月7日——法国一工程师将圆周率算到小数点后27000亿位。2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。
3
2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。今年56岁近藤茂使用的是自己组装的计算机,从去年10月起开始计算,花费约一年时间刷新了纪录。
而如今计算机高速发展,人们虽然已经知道π是一个无理数,而且已经计算得越来越精准,而人们不管是工程测量、数学解题过程中,大部分都取前两位数,就是π≈3.14,也产生了圆周率日(3月14日)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
π是一个无限不循环的小数,近似值为3.14
这个数字至今还没有计算到最后一位
计算的方法就是用割补法,只不只不过人工计算的话,不会达到太快的效率,所以现在都采用计算机
这个数字至今还没有计算到最后一位
计算的方法就是用割补法,只不只不过人工计算的话,不会达到太快的效率,所以现在都采用计算机
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1π=3.14,2π=6.28,3π=9.42,4π=12.56,5π=15.7,6π=18.84,7π=21.98,8π=25.12,9π=28.26,10π=31.4
11π=35.45,12π=37.68,13π=40.83,14π=43.96,15π=47.1,16π=50.24,17π=53.38,18π=56.52,19π=59.66,20π=62.8
21π=65.94,22π=69.08,23π=72.22,24π=75.36,25π=78.5,26π=81.64,27π=84.78,28π=87.92,29π=91.06,30π=94.2
31π=97.34,32π=100.48,33π=103.62,34π=106.76,35π=109.9,36π=113.04,37π=116.18,38π=119.32,39π=122.46,40π=125.6
41π=128.74,42π=131.88,43π=135.02,44π=138.16,45π=141.3,46π=144.44,47π=147.58,48π=150.72,49π=153.86,50π=157
51π=160.14,52π=163.28,53π=166.42,54π=169.56,55π=172.7,56π=175.84,57π=172.98,58π=182.12,59π=185.26,60π=188.4
61π=191.54,62π=194.68,63π=197.82,64π=200.96,65π=204.1,66π=207.24,67π=210.38,68π=213.52,69π=216.66,70π=219.8
71π=222.94,72π=226.08,73π=229.22,74π=232.36,75π=235.5,76π=238.64,77π=241.78,78π=244.92,79π=248.06,80π=251.2
81π=254.34,82π=257.48,83π=260.62,84π=263.76,85π=266.9,86π=270.04,87π=273.18,88π=276.32,89π=279.46,90π=282.6
91π=285.74,92π=288.88,93π=292.02,94π=295.16,95π=298.3,96π=301.44,97π=304.58,98π=307.72,99π=310.86,100π=314
11π=35.45,12π=37.68,13π=40.83,14π=43.96,15π=47.1,16π=50.24,17π=53.38,18π=56.52,19π=59.66,20π=62.8
21π=65.94,22π=69.08,23π=72.22,24π=75.36,25π=78.5,26π=81.64,27π=84.78,28π=87.92,29π=91.06,30π=94.2
31π=97.34,32π=100.48,33π=103.62,34π=106.76,35π=109.9,36π=113.04,37π=116.18,38π=119.32,39π=122.46,40π=125.6
41π=128.74,42π=131.88,43π=135.02,44π=138.16,45π=141.3,46π=144.44,47π=147.58,48π=150.72,49π=153.86,50π=157
51π=160.14,52π=163.28,53π=166.42,54π=169.56,55π=172.7,56π=175.84,57π=172.98,58π=182.12,59π=185.26,60π=188.4
61π=191.54,62π=194.68,63π=197.82,64π=200.96,65π=204.1,66π=207.24,67π=210.38,68π=213.52,69π=216.66,70π=219.8
71π=222.94,72π=226.08,73π=229.22,74π=232.36,75π=235.5,76π=238.64,77π=241.78,78π=244.92,79π=248.06,80π=251.2
81π=254.34,82π=257.48,83π=260.62,84π=263.76,85π=266.9,86π=270.04,87π=273.18,88π=276.32,89π=279.46,90π=282.6
91π=285.74,92π=288.88,93π=292.02,94π=295.16,95π=298.3,96π=301.44,97π=304.58,98π=307.72,99π=310.86,100π=314
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
圆周率π≈3.141592653589793,是无限不循环小数。
圆周率用希腊字母π(读作[paɪ])表示,是一个常数(约等于3.141592654),是圆的周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用九位小数3.141592654便足以应付一般计算。
圆周率用希腊字母π(读作[paɪ])表示,是一个常数(约等于3.141592654),是圆的周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用九位小数3.141592654便足以应付一般计算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询