已知数列的通项公式Bn=1/n(n+2),求数列的前n项和.?
1个回答
展开全部
Bn=1/n(n+2)=(1/2)[1/n-1/(n+2)]
Sn=(1/2)[1/1-1/3+1/2-1/4+1/3-1/5+...+1/(n-1)-1/(n+1)+1/n-1(n+2)]
=(1/2)[1/1+1/3-1/(n+1)-1/(n+2)]
裂项求和.,9,s1=1/1*3 =1/2(1-1/3) s2=1/2*4 =1/2(1/2-1/4) s3=1/2(1/3-1/5)
sn=1/2{1-1/3+1/2-1/4+1/3-1/5+---------+1/n-1/(n+2)}=3/4+1/2(n+1)(n+2),0,
Sn=(1/2)[1/1-1/3+1/2-1/4+1/3-1/5+...+1/(n-1)-1/(n+1)+1/n-1(n+2)]
=(1/2)[1/1+1/3-1/(n+1)-1/(n+2)]
裂项求和.,9,s1=1/1*3 =1/2(1-1/3) s2=1/2*4 =1/2(1/2-1/4) s3=1/2(1/3-1/5)
sn=1/2{1-1/3+1/2-1/4+1/3-1/5+---------+1/n-1/(n+2)}=3/4+1/2(n+1)(n+2),0,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询