
展开全部
解:∵y'=e^(x+y) ==>y'=e^x*e^y
==>e^(-y)dy=e^xdx
==>e^(-y)=C-e^x (C是积分常数)
==>y=-ln|C-e^x|
∴原微分方程的通解是 y=-ln|C-e^x| (C是积分常数
==>e^(-y)dy=e^xdx
==>e^(-y)=C-e^x (C是积分常数)
==>y=-ln|C-e^x|
∴原微分方程的通解是 y=-ln|C-e^x| (C是积分常数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询