大学数学证明题 对于任意两个正整数m和n,试证:m+n,m-n,mn三者中至少有一个是三的倍数。

pmltt129
2010-05-30 · TA获得超过1843个赞
知道小有建树答主
回答量:302
采纳率:0%
帮助的人:381万
展开全部
反证法,假设都不是3的倍数
因为m-n不是3的倍数,所以m、n除以3不同余
因为mn不是3的倍数,所以m、n均不是3的倍数,那么只有可能一个余1,一个余2
则此时m+n是3的倍数
与假设矛盾
故得证。
lingyangtuzi
2010-05-31 · 超过10用户采纳过TA的回答
知道答主
回答量:28
采纳率:0%
帮助的人:23.4万
展开全部
使用反证法
(1)假设m+n,m-n,mn三者都不是3的倍数,那么首先可以得到m和n均不是三的倍数,我们知道任何一个数模(%)3只可能有三种结果:0、1、2 ;则说明m和n模3只可能是1、2

(2)m+n不是3的倍数 则说明m和n模3只能同时为1或者同时为2,则设m=3k+1(k为任意非负整数),n=3x+1(x为任意非负整数)或者是m=3k+2(k为任意非负整数),n=3x+2(x为任意非负整数)

(3)取一组研究,可以以此类推:m=3k+1(k为任意非负整数),n=3x+1(x为任意非负整数),那么m-n=3(k-x) 则(m-n)模3必定为0,则m-n是3的倍数

所以,综合(1)(2)(3)得证 对于任意两个正整数m和n,试证:m+n,m-n,mn三者中至少有一个是三的倍数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式