2013-11-06
给一圆O,作两垂直的直径OA、OB,
作C点使OC=1/4OB,
作D点使∠OCD=1/4∠OCA
作AO延长线上E点使得∠DCE=45度
步骤二:
作AE中点M,并以M为圆心作一圆过A点,
此圆交OB于F点,再以D为圆心,作一圆
过F点,此圆交直线OA于G4和G6两点。
步骤三:
过G4作OA垂直线交圆O于P4,
过G6作OA垂直线交圆O于P6,
则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。
以1/2弧P4P6为半径,即可在此圆上截出正十七边形的所有顶点。
2013-11-06
正十七边形:
先计算或作出cos(360°/17)
设正17边形中心角为a,则17a=360°,即16a=360°-a
故sin 16a=-sin a,而
sin 16a=2sin 8a·cos 8a=4sin 4a·cos 4a·cos 8a=16sin a·cos a·cos 2a·cos 4a·cos 8a
因sin a不等于0,两边除之有:
16cos a·cos 2a·cos 4a·cos 8a=-1
又由2cos a·cos 2a=cos a+cos 3a(三角函数积化和差公式)等
注意到cos 15a=cos 2a,cos 12a=cos 5a(诱导公式)等,有
2(cos a+co s2a+…+cos 8a)=-1
令
x=cos a+cos 2a+cos 4a+cos 8a
y=cos 3a+cos 5a+cos 6a+cos 7a
有:
x+y=
又xy=(cos a+cos 2a+cos 4a+cos 8a)(cos 3a+cos 5a+cos 6a+cos 7a)
=
(cos 2a+cos 4a+cos 4a+cos 6a+…+cos 14a+cos 15a)
经计算知xy=-1
因而:x=
,y=
其次再设:
=cos a+cos 4a,x2=cos 2a+cos 8a
y1=cos3a+cos5a,y2=cos6a+cos7a
故有x1+x2=
y1+y2=
最后,由cosa+cos4a=x1,cosacos4a=(y1)/2
可求cosa之表达式,
它是有理数的加减乘除平方根的组合, 故正17边形可用尺规作出
做法
1.给一圆O,作两垂直的直径AB、CD.
2.在OA上作E点使OE=1/4AO,连结CE.
3.作∠CEB的平分线EF.
4.作∠FEB的平分线EG,交CO于P.
5.作∠GEH=45°,交CD于Q.
6.以CQ为直径作圆,交OB于K.
7.以P为圆心,PK为半径作圆,交CD于L、M.
8.分别过M、L作CD的垂线,交圆O于N、R.
9.作弧NR的中点S,以SN为半径将圆O分成17等份.
简易作法
编辑
因为360°/17≈21°10′ ,利用sinA 21°6′=0.3600可得近似角。用该方法作正十七边形总误差为17*4′=68′,在不要求十分精确的情况下还是可行的。
作法如下:
1.先画一条直线,用圆规在上面截取5条相等线段,(尽量越短越好),再截取之前四条线段的和,接续之前画的线段。这样,如果每条小线段算作0.1的话,那么整条线段就是1.8。
2.用圆规截取之前5条小线段的长,画5次,这样这条线段就是5。1.8/5=0.36。准备工作完毕!
3.另作一条直线,作垂线,1.8的线段作为对边,5的线段作为斜边,那个最小的锐角即是近似的360°/17的角。以其顶点为圆心,重复作角直至闭合。画一大圆,连接其与17条射线的交点,即可。
来源:百度百科-正十七边形
2013-11-06
前两道题在两个小时内就顺利完成了。第三道题写在另一张小纸条上:要求只用贺规和一把没有刻度的直尺,画出一个正17边形。
他感到非常吃力。时间一分一秒的过去了,第三道题竟毫无进展。这位青年绞尽脑汁,但他发现,自己学过的所有数学知识似乎对解开这道题都没有任何帮助。
困难反而激起了他的斗志:我一定要把它做出来!他拿起圆规和直尺,他一边思索一边在纸上画着,尝试着用一些超常规的思路去寻求答案。
当窗口露出曙光时,青年长舒了一口气,他终于完成了这道难题。
见到导师时,青年有些内疚和自责。他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,我辜负了您对我的栽培……”
导师接过学生的作业一看,当即惊呆了。他用颤抖的声音对青年说:“这是你自己做出来的吗?”青年有些疑惑地看着导师,回答道:“是我做的。但是,我花了整整一个通宵。”
导师请他坐下,取出圆规和直尺,在书桌上铺开纸,让他当着自己的面再做出一个正17边形。
青年很快做出了一上正17边形。导师激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,你竟然一个晚上就解出来了。你是一个真正的天才!”
原来,导师也一直想解开这道难题。那天,他是因为失误,才将写有这道题目的纸条交给了学生。
每当这位青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来。”
这位青年就是数学王子高斯。
高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
关于正十七边形的画法(高斯的思路,本人并非有意剽窃^_^):
有一个定理在这里要用到的:
若长为|a|,|b|的线段可以用几何方法做出来,那么长为|c|的线段也能用几何方法做出的,
其中c是方程x^2+ax+b=0的实根。
上面的定理实际上就是在有线段长度|a|和|b|的时候,做出长为sqrt(a^2-4b)的线段。
(这一步,大家会画吧?)
而要在一个单位圆中做出正十七边形,主要就是做出长度是cos(2pai/17)的线段。
下面我把当年高斯证明可以做出cos(2pai/17)的证明给出,同时也就给出了具体的做法。
设a=2[cos(2pai/17)+cos(4pai/17)+cos(8pai/17)+cos(16pai/17)]>0
a1=2[cos(6pai/17)+cos(10pai/17)+cos(12pai/17)+cos(14pai/17)]<0
则有a+a1=-1,a*a1=-4,即a,a1是方程x^2+x-4=0的根,所以长为|a|和|a1|的线段可以做出。
令b=2[cos(2pai/17)+cos(8pai/17)]>0 b1=2[cos(4pai/17)+cos(16pai/17)]<0
c=2[cos(6pai/17)+cos(10pai/17)]>0 c1=2[cos(12pai/17)+cos(14pai/17)]<0
则有b+b1=a b*b1=-1 c+c1=a1 c*c1=-1
同样道理,长度是|b|,|b1|,|c|,|c1|的线段都可以做出来的。
再有2cos(2pai/17)+2cos(8pai/17)=b [2cos(2pai/17)]*[2cos(8pai/17)]=c
这样,2cos(2pai/17)是方程x^2-bx+c=0较大的实根,
显然也可以做出来,并且作图的方法上面已经给出来了