求解答: 在△ABC中,a=1,b=2,CosC=1/4。 (1)求△ABC的周长 (2)求Cos
求解答:在△ABC中,a=1,b=2,CosC=1/4。(1)求△ABC的周长(2)求Cos(A-B)的值...
求解答: 在△ABC中,a=1,b=2,CosC=1/4。 (1)求△ABC的周长 (2)求Cos(A-B)的值
展开
2个回答
展开全部
分析:(I)利用余弦定理表示出c的平方,把a,b及cosC的值代入求出c的值,从而求出三角形ABC的周长;
(II)根据cosC的值,利用同角三角函数间的基本关系求出sinC的值,然后由a,c及sinC的值,利用正弦定理即可求出sinA的值,根据大边对大角,由a小于c得到A小于C,即A为锐角,则根据sinA的值利用同角三角函数间的基本关系求出cosA的值,然后利用两角差的余弦函数公式化简所求的式子,把各自的值代入即可求出值.
解答:解:(I)∵c^2=a^2+b^2-2abcosC=1+4-4×1/4=4,
∴c=2,
∴△ABC的周长为a+b+c=1+2+2=5.
(II)∵cosC= 1/4,∴sinC=√(1-cos^2C=) =√(1-(1/4)^2)= (√15)/4.
∴sinA= asinC/c= √15/4/2= (√15)/8.
∵a<c,∴A<C,故A为锐角.则cosA=√(1-(15/8)^2)= 7/8,
∴cos(A-C)=cosAcosC+sinAsinC= 7/8× 1/4+ √15/8× √15/4= 11/16.
(II)根据cosC的值,利用同角三角函数间的基本关系求出sinC的值,然后由a,c及sinC的值,利用正弦定理即可求出sinA的值,根据大边对大角,由a小于c得到A小于C,即A为锐角,则根据sinA的值利用同角三角函数间的基本关系求出cosA的值,然后利用两角差的余弦函数公式化简所求的式子,把各自的值代入即可求出值.
解答:解:(I)∵c^2=a^2+b^2-2abcosC=1+4-4×1/4=4,
∴c=2,
∴△ABC的周长为a+b+c=1+2+2=5.
(II)∵cosC= 1/4,∴sinC=√(1-cos^2C=) =√(1-(1/4)^2)= (√15)/4.
∴sinA= asinC/c= √15/4/2= (√15)/8.
∵a<c,∴A<C,故A为锐角.则cosA=√(1-(15/8)^2)= 7/8,
∴cos(A-C)=cosAcosC+sinAsinC= 7/8× 1/4+ √15/8× √15/4= 11/16.
2014-02-08
展开全部
撒棵艰苦艰苦撒啦啦啦是开学了努力努力降低了快结束拉了你你离开你才能浏览离开你咋了你那里克鲁斯卡借记卡冷静考虑考虑
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询