已知数列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).(1)求数列{an}前三项之和S3的值;(2)证明:数
已知数列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).(1)求数列{an}前三项之和S3的值;(2)证明:数列{an+an-1}(n≥2)是等比...
已知数列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).(1)求数列{an}前三项之和S3的值;(2)证明:数列{an+an-1}(n≥2)是等比数列;(3)求数列{an}的通项公式.
展开
1个回答
展开全部
(1)∵a1=5,a2=2,an=2an-1+3an-2,
∴a3=2a2-3a1=19,
S3=a1+a2+a3=26.
(2)∵an=2an-1+3an-2,等号两端同时加上an-1,整理得an+an-1=3(an-1+an-2),
∴
=3,
∴数列{an+an-1}(n≥2)是等比数列.
(3)由(2)知,数列{an+an-1}的通项为:an+an-1=7×3n-2,n≥2,
拆项累和得:
(-1)nan=[(-1)nan-(-1)n-1an-1]+[(-1)n-1an-1-(-1)n-2an-2]+…+[(-1)2a2-(-1)a1]+(-1)a1,
=7?[(-3)n-2+(-3)n-3+…+(-3)0-5
=
-5
=-
?(-3)n-1-
,
∴an=
?(-3)n-1-
(-1)n,n≥2,
经验证知,上式对n=1也成立,
故数列的通项公式为:an=
?(-3)n-1-
(-1)n,n∈N*.
∴a3=2a2-3a1=19,
S3=a1+a2+a3=26.
(2)∵an=2an-1+3an-2,等号两端同时加上an-1,整理得an+an-1=3(an-1+an-2),
∴
an+an?1 |
an?1+an?2 |
∴数列{an+an-1}(n≥2)是等比数列.
(3)由(2)知,数列{an+an-1}的通项为:an+an-1=7×3n-2,n≥2,
拆项累和得:
(-1)nan=[(-1)nan-(-1)n-1an-1]+[(-1)n-1an-1-(-1)n-2an-2]+…+[(-1)2a2-(-1)a1]+(-1)a1,
=7?[(-3)n-2+(-3)n-3+…+(-3)0-5
=
7?[1?(?3)n?1] |
1+3 |
=-
7 |
4 |
13 |
4 |
∴an=
7 |
4 |
13 |
4 |
经验证知,上式对n=1也成立,
故数列的通项公式为:an=
7 |
4 |
13 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询