如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=12∠BAD.(1)如图1,将∠MAN绕着A点旋

如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=12∠BAD.(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M... 如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=12∠BAD.(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明;(2)如图2,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?并证明你的结论;(3)如图3,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的反向延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明. 展开
 我来答
誓言送粉047
2014-09-16 · 超过62用户采纳过TA的回答
知道答主
回答量:146
采纳率:75%
帮助的人:59.9万
展开全部
(1)证明:延长MB到G,使BG=DN,连接AG.
∵∠ABG=∠ABC=∠ADC=90°,AB=AD,
∴△ABG≌△ADN.
∴AG=AN,BG=DN,∠1=∠4.
∴∠1+∠2=∠4+∠2=∠MAN=
1
2
∠BAD.
∴∠GAM=∠MAN.
又AM=AM,
∴△AMG≌△AMN.
∴MG=MN.
∵MG=BM+BG.
∴MN=BM+DN.
(2)MN=BM-DN.
证明:在BM上截取BG,使BG=DN,连接AG.
∵∠ABC=∠ADC=90°,AD=AB,
∴△ADN≌△ABG,
∴AN=AG,∠NAD=∠GAB,
∴∠MAN=∠NAD+∠BAM=
1
2
∠DAB,
∴∠MAG=
1
2
∠BAD,
∴∠MAN=∠MAG,
∴△MAN≌△MAG,
∴MN=MG,
∴MN=BM-DN.
(3)MN=DN-BM.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式