
已知二次函数y=ax2-2ax+b(a≠0)的图象与x轴分别交于A、B两点(A点在B点左侧),与y轴交于点C,直线y=-x
已知二次函数y=ax2-2ax+b(a≠0)的图象与x轴分别交于A、B两点(A点在B点左侧),与y轴交于点C,直线y=-x+b经过点B、C,且B点坐标为(3,0).(1)...
已知二次函数y=ax2-2ax+b(a≠0)的图象与x轴分别交于A、B两点(A点在B点左侧),与y轴交于点C,直线y=-x+b经过点B、C,且B点坐标为(3,0).(1)求二次函数解析式;(2)在y轴上是否存在点P,使得以点P、B、C、A为顶点的四边形是梯形?若存在,求出P点坐标;若不存在,请说明理由.
展开
1个回答
展开全部
(1)把B(3,0)代入y=-x+b,
∴b=3,
∴C点坐标为(0,3),
把B(3,0)代入y=ax2-2ax+3,
∴a=-1,(1分)
∴二次函数解析式为y=-x2+2x+3.(2分)
(2)当AP1∥CB时,直线过点A(-1,0),
设AP1所在直线解析式为y=-x+b,
把点A代入b=-1,
∴P1点坐标是(0,-1).(3分)
当P2B∥AC时,设AC所在直线为y=kx+b,
把点A(-1,0),C(0,3)代入得
,
∴AC所在直线为y=3x+3,
又∵P2B过点B(3,0),设P2B所在直线为y=kx+b,
∴P2B所在直线为y=3x-9,
∴P2点坐标是(0,-9),(5分)
综上所述存在这样的点P使得以P、B、C、A为顶点的四边形是梯形,
点P的坐标是(0,-1),(0,-9).(6分)
∴b=3,
∴C点坐标为(0,3),
把B(3,0)代入y=ax2-2ax+3,
∴a=-1,(1分)
∴二次函数解析式为y=-x2+2x+3.(2分)
(2)当AP1∥CB时,直线过点A(-1,0),
设AP1所在直线解析式为y=-x+b,
把点A代入b=-1,
∴P1点坐标是(0,-1).(3分)
当P2B∥AC时,设AC所在直线为y=kx+b,
把点A(-1,0),C(0,3)代入得
|
∴AC所在直线为y=3x+3,
又∵P2B过点B(3,0),设P2B所在直线为y=kx+b,
∴P2B所在直线为y=3x-9,
∴P2点坐标是(0,-9),(5分)
综上所述存在这样的点P使得以P、B、C、A为顶点的四边形是梯形,
点P的坐标是(0,-1),(0,-9).(6分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询