已知双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的一个焦点与抛物线y^2=4x的焦点重合,且双曲线的离心率为√5
求:若有两个半径相同的圆C1,C2,他们的圆心都在x轴上方且分别在双曲线C的两条渐近线上,过双曲线的右焦点且且斜率为-1的直线l与圆C1,C2都相切,求两圆C1,C2圆心...
求:若有两个半径相同的圆C1,C2,他们的圆心都在x轴上方且分别在双曲线C的两条渐近线上,过双曲线的右焦点且且斜率为-1的直线l与圆C1,C2都相切,求两圆C1,C2圆心连线的斜率的范围。
展开
1个回答
展开全部
y = 4x = 2px = 2*2x, p = 2, 抛物线焦点F(1, 0), 此为双曲线的右焦点, c = 1 a + b = 1 离心率为√5 = c/a = 1/a, a = 1/√5 b = √(1 - a) = 2/√5 双曲线C的两条渐近线:y = ±bx/a = ±2x 设C1(p, 2p), C2(q, -2q), p > 0, q > 0 (圆心都在x轴上方) 设圆半径为r 直线l斜率为-1, 过双曲线的右焦点, 方程为y - 0 = -(x - 1), x+ y - 1 =0 C1, C2与直线l的距离均为r C1: r = |p + 2p - 1|/√2 = |3p - 1|/√2 C2: r = |q - 2q - 1|/√2 = |q + 1|/√2 |3p - 1| = |q + 1| (1) 3p - 1 = -q -1 3p = -q, p, q异号,舍去 (2) 3p - 1 = q + 1 q = 3p - 2 C1,C2圆心连线的斜率k = (2p + 2q)/(p - q) = (2p + 6p - 4)/(p - 3p + 2) = 4(2p -1)/(2 - 2p) = 2(2p - 1)/( 1 - p) = -4 - 2/(p - 1) 此为反比例函数k = -2/p向右平移一个单位,然后向下4个单位得到的, 而且只取p > 0的部分 k= -4 - 2/(p - 1)的左支取值范围是k > -2 (p = 0, k = -2) k= -4 - 2/(p - 1)的右支取值范围是k < - 4 k的取值范围: k > -2或 k < -4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询