计算 tan(π/4+α)cos2α/2cos²(π/4-α)
1个回答
展开全部
tan(π/4+α)=【tan(π/4)+tan(α)】/【1-tan(π/4)*tan(α)】=【1+tan(α)】/【1-tan(α)】
tan(π/4-α)=【tan(π/4)-tan(α)】/【1+tan(π/4)*tan(α)】=【1-tan(α)】/【1+tan(α)】
tan(π/4+α)×cos2α/2cos²(π/4-α)
其中cos2α=sin(π/2-2α)=2sin(π/4-α)cos(π/4-α)带入原式得
tan(π/4+α)× tan(π/4-α)=1
tan(π/4-α)=【tan(π/4)-tan(α)】/【1+tan(π/4)*tan(α)】=【1-tan(α)】/【1+tan(α)】
tan(π/4+α)×cos2α/2cos²(π/4-α)
其中cos2α=sin(π/2-2α)=2sin(π/4-α)cos(π/4-α)带入原式得
tan(π/4+α)× tan(π/4-α)=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询