2015-03-22 · 知道合伙人教育行家
关注
展开全部
∫(1到4) lnx/√x
=∫(1到4)lnx d(2√x)
=lnx*2√x-∫(1到4) 2√x d(lnx)
=2√xlnx-4√x (1到4)
=(2√4*ln4-4√4)-(2√1*ln1-4√1)
=8ln2-8-0+4
=8ln2-4
∫xarctanxdx=1/2 ∫arctanxdx^2
=1/2[x^2arctanx|(0,1)-∫(0,1)x^2/(1+x^2)dx]
=1/2[π/4-∫(0,1)1-1/(1+x^2)dx]
=1/2[π/4-∫(0,1)dx+∫(0,1)1/(1+x^2)dx]
=1/2[π/4-x|(0,1)+arctanx|(0,1)]
=π/4-1/2
希望能帮到你, 望采纳. 祝学习进步
=∫(1到4)lnx d(2√x)
=lnx*2√x-∫(1到4) 2√x d(lnx)
=2√xlnx-4√x (1到4)
=(2√4*ln4-4√4)-(2√1*ln1-4√1)
=8ln2-8-0+4
=8ln2-4
∫xarctanxdx=1/2 ∫arctanxdx^2
=1/2[x^2arctanx|(0,1)-∫(0,1)x^2/(1+x^2)dx]
=1/2[π/4-∫(0,1)1-1/(1+x^2)dx]
=1/2[π/4-∫(0,1)dx+∫(0,1)1/(1+x^2)dx]
=1/2[π/4-x|(0,1)+arctanx|(0,1)]
=π/4-1/2
希望能帮到你, 望采纳. 祝学习进步
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询