线性代数 a的秩为n,则aTa的秩也为n,这是为何??

 我来答
兔老大米奇
高粉答主

2019-12-17 · 醉心答题,欢迎关注
知道小有建树答主
回答量:988
采纳率:100%
帮助的人:15.5万
展开全部

解:

当矩阵a是n阶且秩为n时,|a|不等于0,|aT|=|a|也不等于0,|aTa|=|a||Ta|不等于0,所以aTa为满秩矩阵,其秩必为n。

若A的秩为n-1,则|A|=0,于是AA*=|A|E=0,这说明A*的列都是Ax=0的解。

因为A的秩为n-1,所以Ax=0的基础解系只有一个解向量.所以A*的列向量都可由这一基础解系来线性表示,故A*的秩不超过1,但A*有非零元,所以A*的秩大于或等于1,所以A*的秩只能等于1。

扩展资料

举例

高等代数,线性代数矩阵A(n×n)的秩为1.那么他的特征值等于:

分析:

因为A的秩等于1,所以A的行向量中有一行非零(记为α,不妨记为列向量),且其余行都是它的倍数.将这些倍数构成列向量β,β≠0

则有A=βα^T.

如:A=

246

123

000

则α=(1,2,3)^T,β=(2,1,0)^T,A=βα^T。

注意到α^Tβ是两个向量的内积,是一个数(上例中等于4)

所以有Aβ=(βα^T)β=(α^Tβ)β

所以α^Tβ是A的一个特征值, β是A的属于这个特征值的特征向量

再由r(A)=1知, 齐次线性方程组 AX=0 的基础解系含 n-r(A)=n-1 个解向量。

综上知 0 是A的 n-1 重特征值。tr(A)=α^Tβ+0+0+...+0=α^Tβ。

西街口第一号店
2018-11-19 · TA获得超过404个赞
知道答主
回答量:47
采纳率:100%
帮助的人:2.9万
展开全部
因为AtA的解是Ax的解 Ax的解是Atax的解 既然解相同 ,那么自由向量的个数也相同,故秩相同
证明
(1)证明Ax的解是ATAx的解很容易证明
(2)若有AtAx=0 左乘xT得XT(ATAX)=0,
若设Ax={b1.b2.....}
可得 (AX)TAX=b12+b22+……=0故b1 b2...为0 所以是a的解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海皮皮龟
推荐于2016-08-28 · TA获得超过8369个赞
知道大有可为答主
回答量:4353
采纳率:60%
帮助的人:1921万
展开全部
你的问题中的矩阵a是n阶矩阵才对,否则命题不真。
当矩阵a是n阶且秩为n时,|a|不等于0,|aT|=|a|也不等于0,|aTa|=|a||Ta|不等于0,所以
aTa为满秩矩阵,其秩必为n
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
misshappy是我
2015-10-25 · TA获得超过2.4万个赞
知道大有可为答主
回答量:6777
采纳率:55%
帮助的人:399万
展开全部
  因为当矩阵a是n阶且秩为n时,|a|不等于0,|aT|=|a|也不等于0,|aTa|=|a||Ta|不等于0,所以aTa为满秩矩阵,其秩必为n。
  《线性代数》包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式