关于离散数学 求如下公式的主析取范式和主合取 范式 (p∧q)∨(p∧r)
2个回答
展开全部
求主范式的过程如下:
(p∧q)∨(p∧r)
⇔(p∧q∧(¬r∨r))∨(p∧(¬q∨q)∧r) 补项
⇔((p∧q∧¬r)∨(p∧q∧r))∨(p∧(¬q∨q)∧r) 分配律2
⇔(p∧q∧¬r)∨(p∧q∧r)∨(p∧(¬q∨q)∧r) 结合律
⇔(p∧q∧¬r)∨(p∧q∧r)∨((p∧¬q∧r)∨(p∧q∧r)) 分配律2
⇔(p∧q∧¬r)∨(p∧q∧r)∨(p∧¬q∧r)∨(p∧q∧r) 结合律
⇔(p∧q∧¬r)∨(p∧¬q∧r)∨(p∧q∧r) 等幂律
得到主析取范式
(p∧q)∨(p∧r)
⇔p∧(q∨r) 分配律
⇔(p∨(¬q∧q)∨(¬r∧r))∧((¬p∧p)∨q∨r) 补项
⇔((p∨¬q∨(¬r∧r))∧(p∨q∨(¬r∧r)))∧((¬p∧p)∨q∨r) 分配律2
⇔(p∨¬q∨(¬r∧r))∧(p∨q∨(¬r∧r))∧((¬p∧p)∨q∨r) 结合律
⇔((p∨¬q∨¬r)∧(p∨¬q∨r))∧(p∨q∨(¬r∧r))∧((¬p∧p)∨q∨r) 分配律2
⇔(p∨¬q∨¬r)∧(p∨¬q∨r)∧(p∨q∨(¬r∧r))∧((¬p∧p)∨q∨r) 结合律
⇔(p∨¬q∨¬r)∧(p∨¬q∨r)∧((p∨q∨¬r)∧(p∨q∨r))∧((¬p∧p)∨q∨r) 分配律2
⇔(p∨¬q∨¬r)∧(p∨¬q∨r)∧(p∨q∨¬r)∧(p∨q∨r)∧((¬p∧p)∨q∨r) 结合律
⇔(p∨¬q∨¬r)∧(p∨¬q∨r)∧(p∨q∨¬r)∧(p∨q∨r)∧((¬p∨q∨r)∧(p∨q∨r)) 分配律2
⇔(p∨¬q∨¬r)∧(p∨¬q∨r)∧(p∨q∨¬r)∧(p∨q∨r)∧(¬p∨q∨r)∧(p∨q∨r) 结合律
⇔(p∨¬q∨¬r)∧(p∨¬q∨r)∧(p∨q∨¬r)∧(¬p∨q∨r)∧(p∨q∨r) 等幂律
得到主合取范式
(p∧q)∨(p∧r)
⇔(p∧q∧(¬r∨r))∨(p∧(¬q∨q)∧r) 补项
⇔((p∧q∧¬r)∨(p∧q∧r))∨(p∧(¬q∨q)∧r) 分配律2
⇔(p∧q∧¬r)∨(p∧q∧r)∨(p∧(¬q∨q)∧r) 结合律
⇔(p∧q∧¬r)∨(p∧q∧r)∨((p∧¬q∧r)∨(p∧q∧r)) 分配律2
⇔(p∧q∧¬r)∨(p∧q∧r)∨(p∧¬q∧r)∨(p∧q∧r) 结合律
⇔(p∧q∧¬r)∨(p∧¬q∧r)∨(p∧q∧r) 等幂律
得到主析取范式
(p∧q)∨(p∧r)
⇔p∧(q∨r) 分配律
⇔(p∨(¬q∧q)∨(¬r∧r))∧((¬p∧p)∨q∨r) 补项
⇔((p∨¬q∨(¬r∧r))∧(p∨q∨(¬r∧r)))∧((¬p∧p)∨q∨r) 分配律2
⇔(p∨¬q∨(¬r∧r))∧(p∨q∨(¬r∧r))∧((¬p∧p)∨q∨r) 结合律
⇔((p∨¬q∨¬r)∧(p∨¬q∨r))∧(p∨q∨(¬r∧r))∧((¬p∧p)∨q∨r) 分配律2
⇔(p∨¬q∨¬r)∧(p∨¬q∨r)∧(p∨q∨(¬r∧r))∧((¬p∧p)∨q∨r) 结合律
⇔(p∨¬q∨¬r)∧(p∨¬q∨r)∧((p∨q∨¬r)∧(p∨q∨r))∧((¬p∧p)∨q∨r) 分配律2
⇔(p∨¬q∨¬r)∧(p∨¬q∨r)∧(p∨q∨¬r)∧(p∨q∨r)∧((¬p∧p)∨q∨r) 结合律
⇔(p∨¬q∨¬r)∧(p∨¬q∨r)∧(p∨q∨¬r)∧(p∨q∨r)∧((¬p∨q∨r)∧(p∨q∨r)) 分配律2
⇔(p∨¬q∨¬r)∧(p∨¬q∨r)∧(p∨q∨¬r)∧(p∨q∨r)∧(¬p∨q∨r)∧(p∨q∨r) 结合律
⇔(p∨¬q∨¬r)∧(p∨¬q∨r)∧(p∨q∨¬r)∧(¬p∨q∨r)∧(p∨q∨r) 等幂律
得到主合取范式
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询