设u=(x+z)/(y+z),其中z=z(x,y)由方程ze^z=xe^x+ye^y所确定,求∂u
设u=(x+z)/(y+z),其中z=z(x,y)由方程ze^z=xe^x+ye^y所确定,求∂u/∂x,∂u/∂y...
设u=(x+z)/(y+z),其中z=z(x,y)由方程ze^z=xe^x+ye^y所确定,求∂u/∂x,∂u/∂y
展开
1个回答
展开全部
ze^x=xe^x+ye^y
ze^x + e^x∂z/∂x = (1+x)e^x
∂z/∂x =(1+x)/(z+1)
ze^x=xe^x+ye^y
e^x ∂z/∂y = (1+y)e^y
∂z/∂y = (1+y)e^(y-x)
u=(x+z)/(y+z )
∂u/∂x
=[(y+z)∂/∂x(x+z) -(x+z)∂/∂x(y+z) ]/(y+z)^2
=[(y+z)(1+∂z/∂x) -(x+z)∂z/∂x) ]/(y+z)^2
=[(y+z)(1+(1+x)/(z+1)) -(x+z)(1+x)/(z+1)) ]/(y+z)^2
∂u/∂y
=[(y+z)∂/∂y(x+z) -(x+z)∂/∂y(y+z) ]/(y+z)^2
=[(y+z)∂z/∂y -(x+z)(1+∂z/∂y) ]/(y+z)^2
=[(y+z)(1+y)e^(y-x) -(x+z)(1+(1+y)e^(y-x)) ]/(y+z)^2
ze^x + e^x∂z/∂x = (1+x)e^x
∂z/∂x =(1+x)/(z+1)
ze^x=xe^x+ye^y
e^x ∂z/∂y = (1+y)e^y
∂z/∂y = (1+y)e^(y-x)
u=(x+z)/(y+z )
∂u/∂x
=[(y+z)∂/∂x(x+z) -(x+z)∂/∂x(y+z) ]/(y+z)^2
=[(y+z)(1+∂z/∂x) -(x+z)∂z/∂x) ]/(y+z)^2
=[(y+z)(1+(1+x)/(z+1)) -(x+z)(1+x)/(z+1)) ]/(y+z)^2
∂u/∂y
=[(y+z)∂/∂y(x+z) -(x+z)∂/∂y(y+z) ]/(y+z)^2
=[(y+z)∂z/∂y -(x+z)(1+∂z/∂y) ]/(y+z)^2
=[(y+z)(1+y)e^(y-x) -(x+z)(1+(1+y)e^(y-x)) ]/(y+z)^2
追问
是ze^z,不是x,不过还是很感谢
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询