如图,A为x轴负半轴上一点,C(0,-2),D(-3,-2).
(1)求△BCD的面积;(2)若AC⊥BC,作∠CBA的平分线交CO于P,交CA于Q,判断∠CPQ与∠CQP的大小关系,并说明你的结论.(3)若∠ADC=∠DAC,点B在...
(1)求△BCD的面积;
(2)若AC⊥BC,作∠CBA的平分线交CO于P,交CA于Q,判断∠CPQ与∠CQP的大小关系,并说明你的结论.
(3)若∠ADC=∠DAC,点B在x轴正半轴上任意运动,∠ACB的平分线CE交DA的延长线于点E,在B点的运动过程中,∠E与∠ABC的比值是否变化?若不变,求出其值;若变化,说明理由. 展开
(2)若AC⊥BC,作∠CBA的平分线交CO于P,交CA于Q,判断∠CPQ与∠CQP的大小关系,并说明你的结论.
(3)若∠ADC=∠DAC,点B在x轴正半轴上任意运动,∠ACB的平分线CE交DA的延长线于点E,在B点的运动过程中,∠E与∠ABC的比值是否变化?若不变,求出其值;若变化,说明理由. 展开
展开全部
(1)∵点C(0,-2),D(-3,-2),
∴CD=3,且CD∥x轴,
∴△BCD的面积=
1/2
×3×2=3;
(2)∵BQ平分∠CBA,
∴∠ABQ=∠CBQ,
∵AC⊥BC,
∴∠CBQ+∠CQP=90°,
又∵∠ABQ+∠CPQ=90°,
∴∠CQP=∠CPQ;
(3)在B点的运动过程中,∠E与∠ABC的比值不变.理由如下:
在△AOE和△BOC中,∠E+∠EAO+∠AOE=180°,
∠ABC+∠BCO+∠BOC=180°,
∵CD∥x轴,
∴∠EAO=∠ADC,
又∵∠AOE=∠BOC(对顶角相等),
∴∠E+∠EAO=∠ABC+∠BCO,
∴
∠E∠ABC
=
1/2
.
即在B点的运动过程中,∠E与∠ABC的比值不变.
∴CD=3,且CD∥x轴,
∴△BCD的面积=
1/2
×3×2=3;
(2)∵BQ平分∠CBA,
∴∠ABQ=∠CBQ,
∵AC⊥BC,
∴∠CBQ+∠CQP=90°,
又∵∠ABQ+∠CPQ=90°,
∴∠CQP=∠CPQ;
(3)在B点的运动过程中,∠E与∠ABC的比值不变.理由如下:
在△AOE和△BOC中,∠E+∠EAO+∠AOE=180°,
∠ABC+∠BCO+∠BOC=180°,
∵CD∥x轴,
∴∠EAO=∠ADC,
又∵∠AOE=∠BOC(对顶角相等),
∴∠E+∠EAO=∠ABC+∠BCO,
∴
∠E∠ABC
=
1/2
.
即在B点的运动过程中,∠E与∠ABC的比值不变.
更多追问追答
追问
∴∠E+∠EAO=∠ABC+∠BCO,
怎么变到
∠E∠ABC=12
.
追答
打错了,是∠E/∠ABC=1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询