arcsin根号下[x/(x+a)]的不定积分怎么求?
令arcsin[x/(x+a)]=t,则x=asint/(1-sint)
∫arcsin[x/(x+a)]dx
=∫td[asint/(1-sint)]
=∫td[asint/(1-sint)]
=atsint/(1-sint) - a∫[sint/(1-sint)]dt
=atsint/(1-sint) -a∫ (sect·tant+sec²t -1)dt
=atsint/(1-sint) -a(sect +tant -t) +C
=x·arcsin[x/(x+a)] -asec[arcsin[x/(x+a)]]-atan[arcsin[x/(x+a)]]+aarcsin[x/(x+a)] +C
不定积分的公式:
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
令arcsin[x/(x+a)]=t,则x=asint/(1-sint)
∫arcsin[x/(x+a)]dx
=∫td[asint/(1-sint)]
=∫td[asint/(1-sint)]
=atsint/(1-sint) - a∫[sint/(1-sint)]dt
=atsint/(1-sint) -a∫ (sect·tant+sec²t -1)dt
=atsint/(1-sint) -a(sect +tant -t) +C
=x·arcsin[x/(x+a)] -asec[arcsin[x/(x+a)]]-atan[arcsin[x/(x+a)]]+aarcsin[x/(x+a)] +C
原式=∫udatan²u=autan²u-a∫tan²udu
=autan²u-a∫(sec²u-1)du
=autan²u-atanu+au+C
下面将u,atan²u带入即可完成解答,这不在赘述!