根号下[(x-a)/(x-b)]的不定积分怎么求?
2个回答
展开全部
令√[(x-a)/(x-b)]=u,则:(x-a)/(x-b)=u^2,
∴x-a=u^2x-bu^2,∴(1-u^2)x=a-bu^2,∴x=(a-bu^2)/(1-u^2),
∴dx
={[-2bu(1-u^2)+2u(a-bu^2)]/(1-u^2)^2}du
=[(-2bu+2bu^3+2au-2bu^3)/(1-u^2)^2]du
=2(a-b)[u/(1-u^2)^2]du。
∴∫√[(x-a)/(x-b)]dx
=2(a-b)∫[u^2/(1-u^2)^2]du
=2(b-a)∫[(1-u^2-1)/(1-u^2)^2]du
=2(b-a)∫[1/(1-u^2)]du-2(b-a)∫[1/(1-u^2)^2]du
=(b-a)∫[(1+u+1-u)/(1-u^2)]du
-(1/2)(b-a)∫[(1+u+1-u)/(1-u^2)]^2du
=(b-a)∫[1/(1-u)]du+(b-a)∫[1/(1+u)]du
-(1/2)(b-a)∫[1/(1-u)^2]du-(1/2)(b-a)∫[1/(1+u)^2]du
=-(b-a)ln|1-u|+(b-a)ln|1+u|
+(b-a)[1/(1-u)]-(b-a)[1/(1+u)]+C
=(b-a)ln|1+√[(x-a)/(x-b)]|-(b-a)ln|1-√[(x-a)/(x-b)]|
+(b-a)/{1-√[(x-a)/(x-b)]}-(b-a)/{1+√[(x-a)/(x-b)]}+C。
∴x-a=u^2x-bu^2,∴(1-u^2)x=a-bu^2,∴x=(a-bu^2)/(1-u^2),
∴dx
={[-2bu(1-u^2)+2u(a-bu^2)]/(1-u^2)^2}du
=[(-2bu+2bu^3+2au-2bu^3)/(1-u^2)^2]du
=2(a-b)[u/(1-u^2)^2]du。
∴∫√[(x-a)/(x-b)]dx
=2(a-b)∫[u^2/(1-u^2)^2]du
=2(b-a)∫[(1-u^2-1)/(1-u^2)^2]du
=2(b-a)∫[1/(1-u^2)]du-2(b-a)∫[1/(1-u^2)^2]du
=(b-a)∫[(1+u+1-u)/(1-u^2)]du
-(1/2)(b-a)∫[(1+u+1-u)/(1-u^2)]^2du
=(b-a)∫[1/(1-u)]du+(b-a)∫[1/(1+u)]du
-(1/2)(b-a)∫[1/(1-u)^2]du-(1/2)(b-a)∫[1/(1+u)^2]du
=-(b-a)ln|1-u|+(b-a)ln|1+u|
+(b-a)[1/(1-u)]-(b-a)[1/(1+u)]+C
=(b-a)ln|1+√[(x-a)/(x-b)]|-(b-a)ln|1-√[(x-a)/(x-b)]|
+(b-a)/{1-√[(x-a)/(x-b)]}-(b-a)/{1+√[(x-a)/(x-b)]}+C。
展开全部
楼上少了个根号
令√[(x-a)/(x-b)]=u,然后解出u=......,再算出dx=....
然后积分,计算量很大的。我把结果给你,是用数学软件算出来的。这种题不宜手工计算。
(1/2)*sqrt((x-a)/(x-b))*(x-b)*(2*sqrt(x^2-x*b-x*a+a*b)+ln(-(1/2)*b-(1/2)*a+x+sqrt(x^2-x*b-x*a+a*b))*b-ln(-(1/2)*b-(1/2)*a+x+sqrt(x^2-x*b-x*a+a*b))*a)/sqrt((x-a)*(x-b))
令√[(x-a)/(x-b)]=u,然后解出u=......,再算出dx=....
然后积分,计算量很大的。我把结果给你,是用数学软件算出来的。这种题不宜手工计算。
(1/2)*sqrt((x-a)/(x-b))*(x-b)*(2*sqrt(x^2-x*b-x*a+a*b)+ln(-(1/2)*b-(1/2)*a+x+sqrt(x^2-x*b-x*a+a*b))*b-ln(-(1/2)*b-(1/2)*a+x+sqrt(x^2-x*b-x*a+a*b))*a)/sqrt((x-a)*(x-b))
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询