这个题怎么证明

 我来答
茹翊神谕者

2021-10-06 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1628万
展开全部

简单计算一下即可,答案如图所示

百度网友b2f19b6
2016-12-05 · TA获得超过5373个赞
知道大有可为答主
回答量:3725
采纳率:25%
帮助的人:5658万
展开全部
证:设a1,a2,a3对应的特征值分别是x1,x2,x3
β=a1+a2+a3.
Aβ=A(a1+a2+a3)=x1a1+x2a2+x3a3
(A^2)β=(A^2)(a1+a2+a3)=(x1^2)a1+(x2^2)a2+(x3^2)a3
把这3个向量放在一起组成矩阵
[β,Aβ,(A^2)β]
=M*N
=
[a1,a2,a3]*
1 x1 x1^2
1 x2 x2^2
1 x3 x3^2
我们只要证明行列式|β,Aβ,(A^2)β|不为0就行了.
|β,Aβ,(A^2)β|=|M|*|N|
|M|自然不为0,因为a1,a2,a3是不同特征值的特征向量,是线性无关的,所以|M|不为0
|N|也不为0,因为|N|是一个范德蒙行列式,它的值是连乘积的形式,又由于x1,x2,x3各不相同,所以(x1-x2),(x2-x3),(x1-x3)都不是0,那么连乘积也不为0.
综上,|β,Aβ,(A^2)β|不为0,所以β,Aβ,(A^2)β线性无关
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式