高等数学求极限, 题号4+5
1个回答
展开全部
4. 原式 = lim<n→∞>sin[nπ√(1+1/n^2)] = 0.
5. 由罗必塔法则得,
原式 = lim<x→0>[ sinx(cos2x)^(1/2)(cos3x)^(1/3)
+ cosx(cos3x)^(1/3)sin2x/(cos2x)^(1/2)
+ cosx(cos2x)^(1/2) sin3x/(cos3x)^(2/3) ] / (2x)
= (1/2) lim<x→0>[ (sinx/x)(cos2x)^(1/2)(cos3x)^(1/3)
+ cosx(cos3x)^(1/3)(sin2x/x)/(cos2x)^(1/2)
+ cosx(cos2x)^(1/2) (sin3x/x)/(cos3x)^(2/3) ]
= (1/2)[1 + 2 + 3 ] = 3
5. 由罗必塔法则得,
原式 = lim<x→0>[ sinx(cos2x)^(1/2)(cos3x)^(1/3)
+ cosx(cos3x)^(1/3)sin2x/(cos2x)^(1/2)
+ cosx(cos2x)^(1/2) sin3x/(cos3x)^(2/3) ] / (2x)
= (1/2) lim<x→0>[ (sinx/x)(cos2x)^(1/2)(cos3x)^(1/3)
+ cosx(cos3x)^(1/3)(sin2x/x)/(cos2x)^(1/2)
+ cosx(cos2x)^(1/2) (sin3x/x)/(cos3x)^(2/3) ]
= (1/2)[1 + 2 + 3 ] = 3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询