推理与证明数学题

设定义域为R的函数ƒ(x)=1\│x-1│(x≠1),ƒ(x)=1(x=1).关于X的方程ƒ²(x)+bƒ(x)+c=0... 设定义域为R的函数ƒ(x)=1\│x-1│(x≠1),ƒ(x)=1(x=1).关于X的方程ƒ²(x)+bƒ(x)+c=0有3不同实数解X1、X2、X3,则X1²+X2²+X3²=( )
A13
B5
C(2b²+2)/b²
D(3c²+2)/c²
展开
huchuanhu208
2010-06-07 · 超过33用户采纳过TA的回答
知道答主
回答量:78
采纳率:40%
帮助的人:45.7万
展开全部
选B。
若1+b+c≠0,则ƒ²(x)+bƒ(x)+c=0可能有两解、四解。
然而,关于X的方程ƒ²(x)+bƒ(x)+c=0有3不同实数解X1、X2、X3。
所以,当x=1时,使方程ƒ²(x)+bƒ(x)+c=0成立,则1+b+c=0
若x≠1,那么ƒ(x)=1是关于ƒ(x)的方程ƒ²(x)+bƒ(x)+c=0的唯一解,
于是, 此时1\│x-1│=1,即│x-1│=1,即 x=0 或x=2
从而X1²+X2²+X3²=1²+0²+2²=5
(思路不全,仅供参考)
lily_lingling
2010-06-07 · TA获得超过177个赞
知道答主
回答量:134
采纳率:0%
帮助的人:140万
展开全部
对于任意f(x)≠1且f(x)>0,都有两解。
ƒ²(x)+bƒ(x)+c=0
首先要保证b*b-4c>0
这样f(x)有2个值。
为了使只有3个实数解 ,必然有一个f(x)=1.
这样就有了1+b+c=0
且b*b-4c>0
x1=1
因为两个f(x)相加=-b.
所以另一个f(x)=-b-1(注:必然>0)
│x-1|=1/(-b-1)
得x2=1-1/(b+1)
x3=1+1/(b+1)
代入换算:
结果选D
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式