求一阶线性微分方程的通解,没有看懂答案
展开全部
求微分方程 ylnydx+(x-lny)dy=0的通解
解:P=ylny;Q=x-lny;∂P/∂y=1+lny;∂Q/∂x=1;
由于(1/p)(∂P/∂y-∂Q/∂x)=(1/ylny)(lny)=1/y=H(y);
∴有积分因子μ=e^[-∫H(y)dy]=e^[-∫(1/y)dy]=e^(-lny)=1/y.
用积分因子μ=1/y乘原方程的颤谨源两边得:lnydx+[(x-lny)/y]dy=0..........①
此时P=lny;Q=(x-lny)/y;∂P/∂y=1/y=∂Q/∂x,故①是全微分方程。
于是晌祥通解u(x,y)=∫【0,x】lnydx-∫【0,y】[(lny)/y]dy=xlny-(1/2)ln²y=C;
即原方程茄态的通解为:u(x,y)=xlny-(1/2)ln²y=C
事实上,du=(∂u/∂x)dx+(∂u/∂y)dy=lnydx+[(x/y)-(lny)/y]dy
=lnydx+[(x-lny)/y]dy=0就是①式。
将①的两边同乘以y,即得:ylnydx+(x-lny)dy=0,这就是原方程。
解:P=ylny;Q=x-lny;∂P/∂y=1+lny;∂Q/∂x=1;
由于(1/p)(∂P/∂y-∂Q/∂x)=(1/ylny)(lny)=1/y=H(y);
∴有积分因子μ=e^[-∫H(y)dy]=e^[-∫(1/y)dy]=e^(-lny)=1/y.
用积分因子μ=1/y乘原方程的颤谨源两边得:lnydx+[(x-lny)/y]dy=0..........①
此时P=lny;Q=(x-lny)/y;∂P/∂y=1/y=∂Q/∂x,故①是全微分方程。
于是晌祥通解u(x,y)=∫【0,x】lnydx-∫【0,y】[(lny)/y]dy=xlny-(1/2)ln²y=C;
即原方程茄态的通解为:u(x,y)=xlny-(1/2)ln²y=C
事实上,du=(∂u/∂x)dx+(∂u/∂y)dy=lnydx+[(x/y)-(lny)/y]dy
=lnydx+[(x-lny)/y]dy=0就是①式。
将①的两边同乘以y,即得:ylnydx+(x-lny)dy=0,这就是原方程。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询