展开全部
1、一列客车从甲地开往乙地,同时一列货车从甲地开往乙地,当货车行了180千米时,客车行了全程的七分之四;当客车到达乙地时,货车行了全程的八分之七。甲乙两地相距多少千米?
解:
把全部路程看作单位1
那么客车到达终点行了全程,也就是单位1
当客车到达乙地时,货车行了全程的八分之七
相同的时间,路程比就是速度比
由此我们可以知道客车货车的速度比=1:7/8=8:7
所以客车行的路程是货车的8/7倍
所以当客车行了全程的4/7时
货车行了全程的(4/7)/(8/7)=1/2
那么甲乙两地相距180/(1/2)=360千米
1/2就是180千米的对应分率
分析:此题中运用了单位1,用到了比例问题,我们要熟练掌握比例,对于路程、速度和时间之间的关系,一定要清楚,在速度或时间一定时,路程都和另外一个量成正比例,当路程一定时,速度和时间成反比例,这个是基本常识。
2、甲、乙两车同时从A、B两地相对开出,2小时相遇。相遇后两车继续前行,当甲车到达B地时,乙车离A地还有60千米,一直两车速度比是3:2。求甲乙两车的速度。
解:将全部路程看作单位1
速度比=路程比=3:2,也就是说乙行的路程是甲的2/3
那么甲到达B地时,行了全部路程,乙行了1×2/3=2/3
此时距离终点A还有1-2/3=1/3
那么全程=60/(1/3)=180千米
速度和=180/2=90千米/小时
甲的速度=90×3/(3+2)=54千米/小时
乙的速度=90-54=36千米/小时
3、甲、乙两车分别同时从A、B两成相对开出,甲车从A城开往B城,每小时行全程的10%,乙车从B城开往A城,每小时行8千米,当甲车距A城260千米时,乙车距B地320千米。A、B两成之间的路程有多少千米?
解:这个问题可以看作相遇问题,因为是相向而行
乙车还要行驶320/8=4小时
4个小时甲车行驶全程的10%×4=40%=2/5
那么甲车还要行驶全程的2/5,也就是剩下的260千米
AB距离=260/(2/5)=650千米
4、一客车和一货车同时从甲乙两地相对开出,经过3小时相遇,相遇后仍以原速继续行驶,客车行驶2小时到达乙地,此时货车距离甲地150千米,求甲乙两地距离?
解:解此题的关键是把甲乙看成一个整体,问题就迎刃而解了。
甲乙每小时行驶全程的1/3
那么2小时行驶2x1/3=2/3
甲乙相距=150/(1-2/3)=450千米
5、甲乙两车同时分别从两地相对开出,5小时正好行了全程的2/3,甲乙两车的速度比是5:3。余下的路程由乙车单独走完,还要多少小时?
解:将全部路程看作单位1
那么每小时甲乙行驶全程的(2/3)/5=2/15
乙车的速度=(2/15)×(3/8)=1/20
乙5小时行驶1/20×5=1/4
还剩下1-1/4=3/4没有行驶
那么乙还要(3/4)/(1/20)=15个小时到达终点
分析:此题和上一例题有异曲同工之处,都是把甲乙每小时行的路程看作一个整体,然后根据比例分别求出甲乙的速度(用份数表示),从而解决问题,关键之处就是把甲乙看作一个整体,这和工作问题,甲乙的工作效率和是一个道理。
6、甲,乙两辆汽车同时从东站开往西站,甲车每小时比乙车多行12千米。甲车行驶4.5小时到达西站后没有停留,立即从原路返回,在距西站31.5千米和乙车相遇。甲车每小时行多少千米?
解:设甲车速度为a小时/千米。则乙的速度为a-12千米/小时
甲车比乙车多行31.5x2=63千米
用的时间=63/12=5.25小时
所以
(a-12)×5.25+31.5=4.5a
0.75a=31.5
a=42千米/小时
或者
a(5.25-4.5)=31.5
a=42千米/小时
算术法:
相遇时甲比乙多行了31.5×2=63(千米)
相遇时走了 63/12=5.25小时
走31.5千米的路程用了 5.25-4.5=0.75小时
甲每小时行31.5/0.75=42千米
1、王师傅加工一批零件,计划在六月份每天都能超额完成当天任务的15%,后来因机器维修,最后的5天每天只完成当天任务的八成,就这样,六月份共超额加工660个零件,王师傅原来的任务是每天加工多少个零件?
解:首先我们知道6月有30天
将额定每天完成的任务看作单位1
每天超额15%,一共工作30-5=25(天)
每天超额完成15%,25天共超额 25×15%=375%
每天完成八成,5天少完成 5×(1-80%)=100%
这个月共超额完成 375%-100%=275%
660÷275%=240(个)
2、一堆饲料,3牛和5羊可以吃15天,5牛和6羊可以吃10天,那8牛和11羊可以吃几天
解:将这堆饲料的总量看作单位1
那么
3牛和5羊可以吃15天,吃的是单位1的量,相当于每天吃1/15
5牛和6羊可以吃10天,吃的是单位1的量,相当于每天吃1/10
我们此时把3牛5羊看作一个整体,5牛6羊看作1个整体,每天吃饲料的
1/15+1/10=1/6
那么这堆饲料可以供8牛11羊吃1/(1/6)=6天
分析:此题看作是和工程问题无关,可是当我们把3牛和5羊看作1个整体,5牛和6羊看作1个整体以后,就相当于把题目变为甲乙完成1项工程,甲单独做需要15天,乙单独做需要10天,甲乙合作需要多少天?是不是这个意思。如果我们把此题认为8牛和11羊吃25天吃的是2倍的饲料,然后除以2,得出12.5天,就不对了,这一点要在学习中注意。
3、甲、乙合作完成一项工作,由于配合得好,甲的工作效率比独做时提高了十分之一,乙的工作效率比独做时提高了五分之一,甲、乙两人合作4小时,完成全部工作的五分之二。第二天乙又独做了4小时,还剩下这件工作的三十分之十三没完成。这项工作甲独做需要几个小时才能完成?
解:乙独做4小时完成全部工程的1-2/5-13/30=3/5-13/30=1/6
乙的工作效率=(1/6)/4==1/24
乙独做需要1/(1/24)=24小时
乙工作效率提高1/5后为(1/24)x(1+1/5)=1/20
甲乙提高后的工作效率和=(2/5)/4=1/10
那么甲提高后的工作效率=1/10-1/20=1/20
甲原来的工作效率=(1/20)/(1+1/10)=1/22
甲单独做需要1/(1/22)=22小时
解:
把全部路程看作单位1
那么客车到达终点行了全程,也就是单位1
当客车到达乙地时,货车行了全程的八分之七
相同的时间,路程比就是速度比
由此我们可以知道客车货车的速度比=1:7/8=8:7
所以客车行的路程是货车的8/7倍
所以当客车行了全程的4/7时
货车行了全程的(4/7)/(8/7)=1/2
那么甲乙两地相距180/(1/2)=360千米
1/2就是180千米的对应分率
分析:此题中运用了单位1,用到了比例问题,我们要熟练掌握比例,对于路程、速度和时间之间的关系,一定要清楚,在速度或时间一定时,路程都和另外一个量成正比例,当路程一定时,速度和时间成反比例,这个是基本常识。
2、甲、乙两车同时从A、B两地相对开出,2小时相遇。相遇后两车继续前行,当甲车到达B地时,乙车离A地还有60千米,一直两车速度比是3:2。求甲乙两车的速度。
解:将全部路程看作单位1
速度比=路程比=3:2,也就是说乙行的路程是甲的2/3
那么甲到达B地时,行了全部路程,乙行了1×2/3=2/3
此时距离终点A还有1-2/3=1/3
那么全程=60/(1/3)=180千米
速度和=180/2=90千米/小时
甲的速度=90×3/(3+2)=54千米/小时
乙的速度=90-54=36千米/小时
3、甲、乙两车分别同时从A、B两成相对开出,甲车从A城开往B城,每小时行全程的10%,乙车从B城开往A城,每小时行8千米,当甲车距A城260千米时,乙车距B地320千米。A、B两成之间的路程有多少千米?
解:这个问题可以看作相遇问题,因为是相向而行
乙车还要行驶320/8=4小时
4个小时甲车行驶全程的10%×4=40%=2/5
那么甲车还要行驶全程的2/5,也就是剩下的260千米
AB距离=260/(2/5)=650千米
4、一客车和一货车同时从甲乙两地相对开出,经过3小时相遇,相遇后仍以原速继续行驶,客车行驶2小时到达乙地,此时货车距离甲地150千米,求甲乙两地距离?
解:解此题的关键是把甲乙看成一个整体,问题就迎刃而解了。
甲乙每小时行驶全程的1/3
那么2小时行驶2x1/3=2/3
甲乙相距=150/(1-2/3)=450千米
5、甲乙两车同时分别从两地相对开出,5小时正好行了全程的2/3,甲乙两车的速度比是5:3。余下的路程由乙车单独走完,还要多少小时?
解:将全部路程看作单位1
那么每小时甲乙行驶全程的(2/3)/5=2/15
乙车的速度=(2/15)×(3/8)=1/20
乙5小时行驶1/20×5=1/4
还剩下1-1/4=3/4没有行驶
那么乙还要(3/4)/(1/20)=15个小时到达终点
分析:此题和上一例题有异曲同工之处,都是把甲乙每小时行的路程看作一个整体,然后根据比例分别求出甲乙的速度(用份数表示),从而解决问题,关键之处就是把甲乙看作一个整体,这和工作问题,甲乙的工作效率和是一个道理。
6、甲,乙两辆汽车同时从东站开往西站,甲车每小时比乙车多行12千米。甲车行驶4.5小时到达西站后没有停留,立即从原路返回,在距西站31.5千米和乙车相遇。甲车每小时行多少千米?
解:设甲车速度为a小时/千米。则乙的速度为a-12千米/小时
甲车比乙车多行31.5x2=63千米
用的时间=63/12=5.25小时
所以
(a-12)×5.25+31.5=4.5a
0.75a=31.5
a=42千米/小时
或者
a(5.25-4.5)=31.5
a=42千米/小时
算术法:
相遇时甲比乙多行了31.5×2=63(千米)
相遇时走了 63/12=5.25小时
走31.5千米的路程用了 5.25-4.5=0.75小时
甲每小时行31.5/0.75=42千米
1、王师傅加工一批零件,计划在六月份每天都能超额完成当天任务的15%,后来因机器维修,最后的5天每天只完成当天任务的八成,就这样,六月份共超额加工660个零件,王师傅原来的任务是每天加工多少个零件?
解:首先我们知道6月有30天
将额定每天完成的任务看作单位1
每天超额15%,一共工作30-5=25(天)
每天超额完成15%,25天共超额 25×15%=375%
每天完成八成,5天少完成 5×(1-80%)=100%
这个月共超额完成 375%-100%=275%
660÷275%=240(个)
2、一堆饲料,3牛和5羊可以吃15天,5牛和6羊可以吃10天,那8牛和11羊可以吃几天
解:将这堆饲料的总量看作单位1
那么
3牛和5羊可以吃15天,吃的是单位1的量,相当于每天吃1/15
5牛和6羊可以吃10天,吃的是单位1的量,相当于每天吃1/10
我们此时把3牛5羊看作一个整体,5牛6羊看作1个整体,每天吃饲料的
1/15+1/10=1/6
那么这堆饲料可以供8牛11羊吃1/(1/6)=6天
分析:此题看作是和工程问题无关,可是当我们把3牛和5羊看作1个整体,5牛和6羊看作1个整体以后,就相当于把题目变为甲乙完成1项工程,甲单独做需要15天,乙单独做需要10天,甲乙合作需要多少天?是不是这个意思。如果我们把此题认为8牛和11羊吃25天吃的是2倍的饲料,然后除以2,得出12.5天,就不对了,这一点要在学习中注意。
3、甲、乙合作完成一项工作,由于配合得好,甲的工作效率比独做时提高了十分之一,乙的工作效率比独做时提高了五分之一,甲、乙两人合作4小时,完成全部工作的五分之二。第二天乙又独做了4小时,还剩下这件工作的三十分之十三没完成。这项工作甲独做需要几个小时才能完成?
解:乙独做4小时完成全部工程的1-2/5-13/30=3/5-13/30=1/6
乙的工作效率=(1/6)/4==1/24
乙独做需要1/(1/24)=24小时
乙工作效率提高1/5后为(1/24)x(1+1/5)=1/20
甲乙提高后的工作效率和=(2/5)/4=1/10
那么甲提高后的工作效率=1/10-1/20=1/20
甲原来的工作效率=(1/20)/(1+1/10)=1/22
甲单独做需要1/(1/22)=22小时
参考资料: 团队:我最爱数学!
展开全部
建议加个这方面的团队,看他们被采纳的问题,有很多的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
小明妈妈比他大26岁,去年小明妈**年龄是小明年龄的3倍,小明今年多少岁?
14岁
由于小明妈妈与小明的年龄差是不变的,于是可以知道小明去年的年龄是:
26÷(3-1)=13(岁)
所以小明今年是14岁.
另解:设小明今年x岁,小明妈妈今年是(x+26)岁,列方程得
x+26-1=3(x-1)
解方程得 2x=26-1+3
x=14(岁)
14岁
由于小明妈妈与小明的年龄差是不变的,于是可以知道小明去年的年龄是:
26÷(3-1)=13(岁)
所以小明今年是14岁.
另解:设小明今年x岁,小明妈妈今年是(x+26)岁,列方程得
x+26-1=3(x-1)
解方程得 2x=26-1+3
x=14(岁)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一列客车从甲地开往乙地,同时一列货车从甲地开往乙地,当货车行了180千米时,客车行了全程的七分之三;当客车到达乙地时,货车行了全程的八分之六。甲乙两地相距多少千米?
甲、乙两车同时从A、B两地相对开出,3小时相遇。相遇后两车继续前行,当甲车到达B地时,乙车离A地还有40千米,一直两车速度比是2:3。求甲乙两车的速度。
甲、乙两车同时从A、B两地相对开出,3小时相遇。相遇后两车继续前行,当甲车到达B地时,乙车离A地还有40千米,一直两车速度比是2:3。求甲乙两车的速度。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询