积分分求体积
展开全部
题目有点问题:要求V(a)的最值,a应该为闭区间,而不是开区间。假设0=<a<=1,解题如下:
说明:^——表示次方
解:y=x^2与y=a^2交点:(a,√a)
y=x^2与x=1交点:(1,1)
V1(a)=∫(0,a)π(a^4-x^4)dx
=π(a^4x-1/5x^5)|(0,a)
=π[(a^4·a-1/5a^5)-(a^4·0-1/5·0^5)]
=4/5πa^5
V2(a)=∫(a,1)π(x^4-a^4)dx
=π(1/5x^5-a^4x)|(a,1)
=π[(1/5·1^5-a^4·1)-(1/5a^5-a^4·a)]
=π[1/5-a^4-1/5a^5+a^5]
=π/5-πa^4+4/5πa^5
V(a)=V1+V2
=4/5πa^5+π/5-πa^4+4/5πa^5
=8/5πa^5-πa^4+π/5
V'(a)=8πa^4-4πa^3
=4πa^3(a-1)
V'(a)<0
4πa^3(a-1)<0
0<a<1
单调递减区间:(0,1)
最小值:V(a)min=V(1)
=8/5π·1^5-π·1^4+π/5
=8/5π-π+π/5
=4/5π
说明:^——表示次方
解:y=x^2与y=a^2交点:(a,√a)
y=x^2与x=1交点:(1,1)
V1(a)=∫(0,a)π(a^4-x^4)dx
=π(a^4x-1/5x^5)|(0,a)
=π[(a^4·a-1/5a^5)-(a^4·0-1/5·0^5)]
=4/5πa^5
V2(a)=∫(a,1)π(x^4-a^4)dx
=π(1/5x^5-a^4x)|(a,1)
=π[(1/5·1^5-a^4·1)-(1/5a^5-a^4·a)]
=π[1/5-a^4-1/5a^5+a^5]
=π/5-πa^4+4/5πa^5
V(a)=V1+V2
=4/5πa^5+π/5-πa^4+4/5πa^5
=8/5πa^5-πa^4+π/5
V'(a)=8πa^4-4πa^3
=4πa^3(a-1)
V'(a)<0
4πa^3(a-1)<0
0<a<1
单调递减区间:(0,1)
最小值:V(a)min=V(1)
=8/5π·1^5-π·1^4+π/5
=8/5π-π+π/5
=4/5π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询