高数函数项级数一致收敛性判别 求详细过程

 我来答
lolo59ok
2018-06-25 · TA获得超过521个赞
知道小有建树答主
回答量:934
采纳率:87%
帮助的人:202万
展开全部
p>1时一致收敛,因为可以使用Weierstrass M判别法,与p级数比较。
p小于等于1时也是一致收敛的。因为把括号那个复杂项用e替换后,数项级数可以用Abel判别法证明收敛,从而数项级数当然一致收敛。而替换后产生的误差小于1/(nx), 从而结合前面的n^p衰减速度,变成了n^(p+1)阶衰减。从而误差可以用p级数估计。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式