展开全部
这种题都是用洛必达,上下求导。不过分子要做一个变形,将上限变成x,被积函数变成t^2f(t^2)dt^2=2t^3f(t^2), 这样分子求导得2x^3f(x^2), 分母求导得4x^3,然后分子分母约分得f(x^2)/2. 这里要知道f(0)的值,不然只能以f(0)/2为结果.
更多追问追答
追问
这是第三个答案
一个零
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1. f(x) = ∫<0, x> (x-t)e^(-t^2)dt = ∫<0, x> xe^(-t^2)dt - ∫<0, x> te^(-t^2)dt
= x∫<0, x> e^(-t^2)dt - ∫<0, x> te^(-t^2)dt (对 t 积分,x相对于常量,可提到积分号外)
f'(x) = ∫<0, x> e^(-t^2)dt + xe^(-x^2) - xe^(-x^2) = ∫<0, x> e^(-t^2)dt
df(x) = f'(x)dx = [∫<0, x> e^(-t^2)dt] dx
2. dy/dx = y'<t>/x'<t> = 3t^2/(2t) = (3/2)t, t = 2 时, 切线斜率 k = (3/2)t = 3,
切点 (5,8), 切线方程 y-8 = 3(x-5), 即 3x-y-7 = 0
= x∫<0, x> e^(-t^2)dt - ∫<0, x> te^(-t^2)dt (对 t 积分,x相对于常量,可提到积分号外)
f'(x) = ∫<0, x> e^(-t^2)dt + xe^(-x^2) - xe^(-x^2) = ∫<0, x> e^(-t^2)dt
df(x) = f'(x)dx = [∫<0, x> e^(-t^2)dt] dx
2. dy/dx = y'<t>/x'<t> = 3t^2/(2t) = (3/2)t, t = 2 时, 切线斜率 k = (3/2)t = 3,
切点 (5,8), 切线方程 y-8 = 3(x-5), 即 3x-y-7 = 0
追问
怎么有点看不懂?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询