大神帮忙做一下数学题感谢
3个回答
展开全部
令t=√(x^2-9),t^2=x^2-9,
2tdt=2xdx tdt=xdx
积分号下:√(x^2-9)dx/x
=√(x^2-9) xdx/x^2 (分子分母同乘以x)
=t *tdt/(t^2+9)
=t^2dt/(t^2+9)
=[1-9/(t^2+9)]dt
∫[1-9/(t^2+9)]dt
=t-3arctan(t/3)+C
=√(x^2-9)-3arctan[√(x^2-9)/3]+C
2tdt=2xdx tdt=xdx
积分号下:√(x^2-9)dx/x
=√(x^2-9) xdx/x^2 (分子分母同乘以x)
=t *tdt/(t^2+9)
=t^2dt/(t^2+9)
=[1-9/(t^2+9)]dt
∫[1-9/(t^2+9)]dt
=t-3arctan(t/3)+C
=√(x^2-9)-3arctan[√(x^2-9)/3]+C
追问
还有吗
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询